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Abstract. This paper originates from a classical interpolation problem: how to reconstruct

a cubic polynomial from its finite differences. The investigation leads to an unexpected iden-

tity expressing n3 as a sum involving products of linear terms, revealing a hidden structure.

This identity serves as a base case of a more general pattern. By solving systems of lin-

ear equations, a family of odd power identities n2m+1 involving special numbers Am,r and

symmetric bivariate sums. A recurrence relation for these coefficients Am,r is obtained via

a specific generating function, enabling recursive construction of the coefficients. The main

results include several odd power identities, an identity for binomial version, and identities

for sums of odd powers.
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1. Discussion on interpolation of cubes

This is the story of unexpected results, obtained by an amateur student with a deep

curiosity for mathematics. Although, not a specialist in mathematics, our young explorer

always possessed a strong sense of mathematical beauty and aesthetics. The mathematical

knowledge of the individual was limited by undergraduate level course, which includes the

basics of matrix operations, basic calculus, and elementary linear algebra. One day, our

student found himself observing the tables of finite differences, precisely finite differences of

cubes
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n n3 ∆(n3) ∆2(n3) ∆3(n3)

0 0 1 6 6

1 1 7 12 6

2 8 19 18 6

3 27 37 24 6

4 64 61 30 6

5 125 91 36

6 216 127

7 343

Table 1. Table of finite differences of n3.

The first question that visited curious mind was

Question 1.1. How to reconstruct the value of n3 from the values of its finite differences?

Precisely, the inquiry is to find a way to reconstruct the values of the sequence {0, 1, 8, 27, 64, . . .}

given the values of finite differences in the table (1), which refers to interpolation.

In its essence, the problem is so old that it can be traced back to ancient Babylonian and

Greek times, several centuries BC and first centuries AD [1]. The process of finding new

data points based on the range of a discrete set of known data points is called interpolation.

Interpolation, as we know it today, was developed in 1674–1684 by Isaac Newton in his

works referenced as foundation of classical interpolation theory [2]. For instance, Newton’s

interpolation formula addresses the question (1.1) immediately, because

27 = 6

(
3

3

)
+ 6

(
3

2

)
+ 1

(
3

1

)
+ 0

(
3

0

)
= 6 + 18 + 3

where 6, 6, 1, 0 is the first row in table (1). In general,

n3 = 6

(
n

3

)
+ 6

(
n

2

)
+ 1

(
n

1

)
+ 0

(
n

0

)
because f(x) =

∑d
k=0∆

d−kf(0)
(

x
d−k

)
, see [3, p. 190].

Great! But there is one thing, the student who has risen the question (1.1) had no clue

about interpolation theory at all. What was decided then? Exactly, our inquirer has decided
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to find a solution himself, being driven by the pure feeling of mystery. His mind was occupied

by only a single thought: All mathematical truths exist timelessly, we only reveal and describe

them. That mindset inspired our student to start his own mathematical journey.

By observing the table of finite differences (1) we can notice that the first finite difference

of cubes may be expressed in terms of its third finite differences ∆3(n3) = 6, as follows

∆(03) = 1 + 6 · 0

∆(13) = 1 + 6 · 0 + 6 · 1

∆(23) = 1 + 6 · 0 + 6 · 1 + 6 · 2

∆(33) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3

...

∆(n3) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3 + · · ·+ 6n

By using sigma notation, we get

∆(n3) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3 + · · ·+ 6 · n = 1 + 6
n∑

k=0

k

However, there is a more beautiful way to prove that ∆(n3) = 1 + 6
∑n

k=0 k. We refer

to one of the finest articles in the area of polynomials and power sums, that is Johann

Faulhaber and sums of powers written by Donald Knuth [4]. Indeed, this article is a great

mean to reach piece of mind in mathematics. We now focus on the odd power identities

shown at [4, p. 9]

n1 =

(
n

1

)
n3 = 6

(
n+ 1

3

)
+

(
n

1

)
n5 = 120

(
n+ 2

5

)
+ 30

(
n+ 1

3

)
+

(
n

1

)
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It is quite interesting that the identity in terms of triangular numbers
(
n+1
2

)
and finite

differences of cubes becomes more obvious

∆n3 = (n+ 1)3 − n3 = 6

(
n+ 1

2

)
+

(
n

0

)
It easy to see that

∆n3 =

[
6

(
n+ 2

3

)
+

(
n+ 1

1

)]
−
[
6

(
n+ 1

3

)
+

(
n

1

)]
= 6

(
n+ 1

2

)
+

(
n

0

)
because

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

Moreover, the concept above allows us to reach N -fold power sums
∑N k2m+1 or finite

differences ∆Nk2m+1 by simply altering binomial coefficients indexes. Quite strong and

impressive.

We can observe that triangular numbers
(
n+1
2

)
are equivalent to(

n+ 1

2

)
=

n∑
k=0

(
k

1

)
=

n∑
k=0

k

because
(
n+1
m+1

)
=
∑n

k=0

(
k
m

)
. This leads us to the fact that

∆n3 = (n+ 1)3 − n3 = 1 + 6
n∑

k=0

k

An experienced mathematician would immediately notice a spot to apply Faulhaber’s for-

mula [5] to get the closed form of the sum
∑n

k=0 k

n∑
k=0

k =
1

2
(n+ n2)

Thus, the finite difference ∆(n3) takes the well-known form, which matches Binomial theo-

rem [6]

∆(n3) = 1 + 6

[
1

2
(n+ n2)

]
= 1 + 3n+ 3n2 =

2∑
k=0

(
3

k

)
nk

And. . . that could be the end of the story, isn’t it? Because all what remains is to say that

n3 =
n−1∑
k=0

(k + 1)3 − k3 =
n−1∑
k=0

(
1 + 6

k∑
t=0

t

)
=

n−1∑
k=0

1 + 3k + 3k2
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Thus, the formula for polynomial n3 is derived successfully, and thus, our protégée’s ques-

tion (1.1) is answered positively. Because we have successfully found the function that

matches n3 from the values of its finite differences from the table (1).

However, not this time. Luckily enough (say), the student who has stated the ques-

tion (1.1) wasn’t really aware of the approaches above neither. What a lazy student! Prob-

ably, that’s exactly the case when unawareness leads to a fresh sight to classical questions,

leading to unexpected results and new insights. Instead, our investigator spotted a little bit

different pattern in ∆n3 = 6
(
n+1
2

)
+
(
n
0

)
.

Consider the polynomial n3 as sum of its finite differences

n3 = [1 + 6 · 0]

+ [1 + 6 · 0 + 6 · 1]

+ [1 + 6 · 0 + 6 · 1 + 6 · 2] + · · ·

+ [1 + 6 · 0 + 6 · 1 + 6 · 2 + · · ·+ 6 · (n− 1)]

We can observe that the term 1 appears n times, the item 6 · 0 appears n− 0 times, the item

6 · 1 appears n− 1 times and so on. By rearranging recurring common terms

n3 = n+ [(n− 0) · 6 · 0]

+ [(n− 1) · 6 · 1]

+ [(n− 2) · 6 · 2] + · · ·

+ [(n− k) · 6 · k] + · · ·

+ [1 · 6 · (n− 1)]

By applying compact sigma sum notation yields an identity for cubes n3

n3 = n+
n−1∑
k=0

6k(n− k)
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We can freely move the term n under the summation, because there are exactly n iterations.

Therefore,

n3 =
n−1∑
k=0

6k(n− k) + 1

By inspecting the expression 6k(n − k) + 1, we can notice that it is symmetric over k. Let

be T1(n, k) = 6k(n− k) + 1 then

T1(n, k) = T1(n, n− k)

This symmetry allows us to alter summation bounds easily. Hence,

n3 =
n∑

k=1

6k(n− k) + 1

By arranging the values of T1(n, k) as a triangular array, we see that cube identities indeed

are true

n/k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 7 1

3 1 13 13 1

4 1 19 25 19 1

5 1 25 37 37 25 1

6 1 31 49 55 49 31 1

7 1 37 61 73 73 61 37 1

Table 2. Values of T1(n, k) = 6k(n−k)+1. See the sequence A287326 in OEIS [7].

The following recurrence holds for T1(n, k)

T1(n, k) = 2T1(n− 1, k)− T1(n− 2, k)

Which is indeed true, because

T1(5, 2) = 2 · 25− 13 = 37

https://oeis.org/A287326
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Finally, our curious learner has reached the first milestone, by finding his own answer to

the question (1.1) and the answer was positive. What an excitement it was! However, it

wouldn’t take long. Indeed, curiosity is not something that can be fulfilled completely, and

thus new questions arise. Somehow, the inquirer got a strong feeling that something bigger,

something even more general hides behind the identity n3 =
∑n

k=1 6k(n− k) + 1. That was

quite intuitive. Fair enough that the next question was

Question 1.2. Given that the identity n3 =
∑n

k=1 6k(n − k) + 1 holds for the polynomial

n3, can it be extended or generalized to higher-degree powers, such as n4 or n5, in a similar

manner?

However, this time it was not so easy for the young explorer to find identity for n4 or

n5 by simply observing the tables of finite differences. The previous approach to express

the difference of cubes ∆n3 in terms of ∆3n3 = 6 and then express the cubes as n3 =∑
k 6k(n−k)+1 — was not successful. Moreover, it wasn’t even clear what is the generic form

of an identity our student was looking for, a lot of concerns came from a simple interpolation

task. Thus, the question (1.2) was shared with the mathematical community. And there

was an answer.

2. A system of linear equations

In 2018, Albert Tkaczyk published two papers [8, 9] presenting analogous identities for

polynomials n5, n7 and n9 derived in a manner similar to n3 =
∑n

k=1 6k(n−k)+1. Further,

these results were polished and published in Mathematical gazette [10]. Tkaczyk assumed

that the identity for n5 takes the following explicit form

n5 =
n∑

k=1

[
Ak2(n− k)2 +Bk(n− k) + C

]
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where A,B,C are yet-unknown coefficients. We denote A,B,C as A2,0,A2,1,A2,2 to reach

the compact form of double sum

n5 =
n∑

k=1

2∑
r=0

A2,rk
r(n− k)r

By observing the equation above, the potential form of generalized odd-power identity be-

comes more obvious. One important note to add here, we define x0 = 1 for all x, see [3, p.

162]. This is because when k = n and r = 0 the term kr(n − k)r = n0 · 00, thus we define

x0 = 1 for all x.

To evaluate the set of coefficients A2,0,A2,1,A2,2 we construct and solve a certain system

of linear equations, which is built as follows

n5 = A2,0

n∑
k=1

k0(n− k)0 +A2,1

n∑
k=1

k1(n− k)1 +A2,2

n∑
k=1

k2(n− k)2

By expanding the sums
∑n

k=1 k
r(n− k)r using Faulhaber’s formula [5], we get an equation

A2,0n+A2,1

[
1

6
(n3 − n)

]
+A2,2

[
1

30
(n5 − n)

]
− n5 = 0

By multiplying by 30 both right-hand side and left-hand side, we get

30A2,0n+ 5A2,1(n
3 − n) +A2,2(n

5 − n)− 30n5 = 0

By expanding the brackets and rearranging the terms

30A2,0 − 5A2,1n+ 5A2,1n
3 −A2,2n+A2,2n

5 − 30n5 = 0

By combining the common terms, we obtain

n(30A2,0 − 5A2,1 −A2,2) + 5A2,1n
3 + n5(A2,2 − 30) = 0

Therefore, 
30A2,0 − 5A2,1 −A2,2 = 0

A2,1 = 0

A2,2 − 30 = 0
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By solving the system above, we evaluate the coefficients A2,0,A2,1,A2,2
A2,2 = 30

A2,1 = 0

A2,0 = 1

Thus, the identity for n5

n5 =
n∑

k=1

30k2(n− k)2 + 1

Again, the terms 30k2(n− k)2 + 1 are symmetric over k. Let be T2(n, k) = 30k2(n− k)2 + 1

then

T2(n, k) = T2(n, n− k)

By arranging the values of T2(n, k) as a triangular array, we see that the identity for n5 is

indeed true

n/k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 31 1

3 1 121 121 1

4 1 271 481 271 1

5 1 481 1081 1081 481 1

6 1 751 1921 2431 1921 751 1

7 1 1081 3001 4321 4321 3001 1081 1

Table 3. Values of T2(n, k) = 30k2(n − k)2 + 1. See the sequence A300656 in

OEIS [11].

The following recurrence holds for T2(n, k)

T2(n, k) = 3T2(n− 1, k)− 3T2(n− 2, k) + T2(n− 3, k)

https://oeis.org/A300656
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Which is indeed true because

T2(6, 2) = 3 · 1081− 3 · 481 + 271 = 1921

Thus, our curious learner who stated the question (1.2) got the answer, yet again green

light was lit. This time, the answer contained even more than methodology to find a set of

coefficients A2,0,A2,1, . . . ,A2,2 — it contained a generic form of odd power identity n2m+1

for any natural m. Hence, the part of questions-answers we discuss so far ends here, it is

time to state a conjecture.

Conjecture 2.1. There is a set of coefficients Am,0,Am,1, . . . ,Am,m such that

n2m+1 =
m∑
r=0

n∑
k=1

Am,rk
r(n− k)r

We already know that to identify the coefficients we have to build and solve a certain

system of linear equations, however, we cannot perform any kind of induction on that, hence

conjecture cannot be proven just by building and solving endless systems of linear equations.

There must be a formula that evaluates the set of coefficients Am,0,Am,1, . . . ,Am,m for every

non-negative integer m — our young investigator thought.

3. Recurrence relation

In 2018, the recurrence relation [12] that evaluates the coefficients Am,r for non-negative

integer m was provided by Max Alekseyev, George Washington University. The main idea of

Alekseyev’s approach was to utilize a generating function to evaluate the set of coefficients

Am,r starting from the base case Am,m and then evaluating the next coefficient Am,m−1 re-

cursively, and so on up to Am,0. We utilize Binomial theorem (n−k)r =
∑r

t=0(−1)t
(
r
t

)
nr−tkt

and a specific version of Faulhaber’s formula [5] with upper bound p+ 1

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bjn

p+1−j =
1

p+ 1

[
p+1∑
j=0

(
p+ 1

j

)
Bjn

p+1−j

]
− Bp+1

p+ 1

The reason we use the Faulhaber’s formula above is because we tend to omit summation

bounds, for simplicity. This helps us to collapse the common terms across complex sums,
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because now can extend the sum over all integers j, while only finitely many terms
(
p+1
j

)
are

non-zero, see also [13]. Hence,

n∑
k=1

kp =
1

p+ 1

[∑
j

(
p+ 1

j

)
Bjn

p+1−j

]
− Bp+1

p+ 1
(1)

Now we expand the sum
∑n

k=1 k
r(n− k)r using Binomial theorem

n∑
k=1

kr(n− k)r =
r∑

t=0

(−1)t
(
r

t

)
nr−t

n∑
k=1

kt+r

By applying Faulhaber’s formula (1), we obtain

n∑
k=1

kr(n− k)r =
r∑

t=0

(−1)t
(
r

t

)
nr−t

[(
1

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

t+r+1−j

)
− Bt+r+1

t+ r + 1

]

By moving the common term (−1)t

t+r+1
out of brackets

n∑
k=1

kr(n− k)r =
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1

[∑
j

(
t+ r + 1

j

)
Bjn

2r+1−j −Bt+r+1n
r−t

]
By expanding the brackets

n∑
k=1

kr(n− k)r =

[
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

2r+1−j

]

−

[
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
By moving the sum in j and omitting summation bounds in t

n∑
k=1

kr(n− k)r =

[∑
j,t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)
Bjn

2r+1−j

]
−

[∑
t

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
By rearranging the sums we obtain

n∑
k=1

kr(n− k)r =

[∑
j

Bjn
2r+1−j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)]
(2)

−

[∑
t

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
We can notice that
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Lemma 3.1 (Altering Binomial identity). For integers r, j, we have

∑
t

(
r

t

)
(−1)t

r + t+ 1

(
r + t+ 1

j

)
=


1

(2r + 1)
(
2r
r

) if j = 0,

(−1)r

j

(
r

2r − j + 1

)
if j > 0.

Proof. For j = 0 we have∑
t

(
r

t

)
(−1)t

r + t+ 1
=
∑
t

(
r

t

)
(−1)t

∫ 1

0

zr+t dz

Because 1
r+t+1

=
∫ 1

0
zr+t dz.

∑
t

(
r

t

)
(−1)t

∫ 1

0

zr+t dz =

∫ 1

0

zr

(∑
t

(
r

t

)
(−1)tzt

)
dz =

∫ 1

0

zr(1− z)r dz

The work [14] provides the identity
(
n
k

)−1
= (n + 1)

∫ 1

0
zk(1 − z)n−k dz. By setting n = 2r

and k = r yields ∑
t

(
r

t

)
(−1)t

r + t+ 1
=

∫ 1

0

zr(1− z)r dz =

(
2r

r

)−1
1

2r + 1

This completes the proof for the case j = 0.

For j > 0 ∑
t

(
r

t

)
(−1)t

r + t+ 1

(
r + t+ 1

j

)
=

1

j

∑
t

(
r

t

)(
r + t

j − 1

)
(−1)t

Because
(
n
k

)
= n

k

(
n−1
k−1

)
. Now apply the coefficient extraction notation [zk] to represent the

coefficient of zk in a generating function. For example: [zk](1 + z)r =
(
r
k

)
. Therefore,

1

j

∑
t

(
r

t

)(
r + t

j − 1

)
(−1)t =

1

j

∑
t

(
r

t

)
(−1)t[zj−1](1 + z)r+t

=
1

j
[zj−1]

∑
t

(
r

t

)
(−1)t(1 + z)r+t

By factoring out (1 + z)r from the sum

1

j
[zj−1]

∑
t

(
r

t

)
(−1)t(1 + z)r+t =

1

j
[zj−1](1 + z)r

∑
t

(
r

t

)
(−1)t(1 + z)t
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Now apply the binomial theorem to the inner sum∑
t

(
r

t

)
(−1)t(1 + z)t = (1− (1 + z))r = (−z)r = (−1)rzr

Hence, for j > 0 ∑
t

(
r

t

)
(−1)t

r + t+ 1

(
r + t+ 1

j

)
=

(−1)r

j
[zj−1](1 + z)rzr

By applying the identity [zp−q]A(z) = [zp]zqA(z)

(−1)r

j
[zj−1](1 + z)rzr =

(−1)r

j
[zj−1−r](1 + z)r =

(−1)r

j

(
r

j − 1− r

)
Finally, we use the symmetry

(
n
k

)
=
(

n
n−k

)
to show that

(−1)r

j

(
r

j − 1− r

)
=

(−1)r

j

(
r

2r − j + 1

)
Thus, for j > 0 ∑

t

(
r

t

)
(−1)t

r + t+ 1

(
r + t+ 1

j

)
=

(−1)r

j

(
r

2r − j + 1

)
This completes the proof. □

To simplify (2) using lemma (3.1), we have to move j = 0 out of the sum Σ in (2) to avoid

division by zero in (−1)r

j
. Therefore,

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[
∞∑
j=1

Bjn
2r+1−j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)]

−

[∑
t

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
Hence, we simplify the equation (2) by using lemma (3.1)

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[
∞∑
j=1

(−1)r

j

(
r

2r − j + 1

)
Bjn

2r−j+1

]

−

[∑
t

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
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By setting ℓ = 2r − j + 1 to the sum
∑∞

j=1, and ℓ = r − t to the sum
∑

t, we collapse the

common terms across two sums, thus

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

]

−

[∑
ℓ

(
r

ℓ

)
(−1)r−ℓ

2r + 1− ℓ
B2r+1−ℓn

ℓ

]

=
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

By replacing odd ℓ by ℓ = 2k + 1, and by simplifying 2’s, we get

Proposition 3.2 (Bivariate Faulhaber’s Formula).

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +
∞∑
k=0

(−1)r

r − k

(
r

2k + 1

)
B2r−2kn

2k+1

Assuming that Am,r is defined by the odd-power identity in conjecture (2.1), we obtain

the following relation for polynomials in n

m∑
r=0

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 +
m∑
r=0

∞∑
k=0

Am,r
(−1)r

r − k

(
r

2k + 1

)
B2r−2kn

2k+1 − n2m+1 = 0

We denote it as

Fm =
m∑
r=0

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 +
m∑
r=0

∞∑
k=0

Am,r
(−1)r

r − k

(
r

2k + 1

)
B2r−2kn

2k+1 − n2m+1 (3)

Basically, the relation (3) is the generating function we utilize to evaluate the values of

Am,m,Am,m−1, . . . ,Am,0. We now fix the unused values of Am,r so that Am,r = 0 for every

r < 0 or r > m.

Extracting the coefficient of n2m+1 in (3) yields

Am,m = (2m+ 1)

(
2m

m

)
because Am,m

1

(2m+1)(2mm )
= 1.
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That’s may not be immediately clear why the coefficient of n2m+1 is (2m + 1)
(
2m
m

)
. To

extract the coefficient of n2m+1 from the generating function (3), we isolate the relevant

terms by setting r = m in the first sum, and k = m in the second sum. This gives

[n2m+1]Fm = Am,m
1

(2m+ 1)
(
2m
m

) + m∑
r=0

Am,r
(−1)r

r −m

(
r

2m+ 1

)
B2r−2m − 1

We observe that the sum

m∑
r=0

Am,r
(−1)r

r −m

(
r

2m+ 1

)
B2r−2m

does not contribute to the determination of the coefficients Am,r, because the binomial

coefficient
(

r
2m+1

)
vanishes for all r ≤ m. Consequently, all terms in the sum are zero. Thus,

Am,m
1

(2m+ 1)
(
2m
m

) − 1 = 0 =⇒ Am,m = (2m+ 1)

(
2m

m

)
Taking the coefficient of n2d+1 for an integer d in the range m

2
≤ d ≤ m− 1 in (3) gives

[n2d+1]Fm = Am,d
1

(2d+ 1)
(
2d
d

) + m∑
r=0

Am,r
(−1)r

r − d

(
r

2d+ 1

)
B2r−2d.

For every m
2

≤ d, the binomial coefficient
(

r
2d+1

)
vanishes, because for all r ≤ m holds

r < 2d+ 1. As a particular example, when r = m and d = m
2
, we have(

m

m+ 1

)
= 0.

Therefore, the entire sum involving
(

r
2d+1

)
vanishes, and we conclude that for all integers d

such that m
2
≤ d ≤ m− 1 the coefficients Am,d are zeroes

Am,d
1

(2d+ 1)
(
2d
d

) = 0 =⇒ Am,d = 0.

In contrast, for values d ≤ m
2
−1, the binomial coefficient

(
r

2d+1

)
can be nonzero; for instance,

if r = m and d = m
2
− 1, then (

m

m− 1

)
̸= 0,

allowing the corresponding terms to contribute to the determination of Am,d.
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Taking the coefficient of n2d+1 for d in the range m
4
≤ d < m

2
in (3), we obtain

Am,d
1

(2d+ 1)
(
2d
d

) + 2(2m+ 1)

(
2m

m

)(
m

2d+ 1

)
(−1)m

2m− 2d
B2m−2d = 0.

Solving for Am,d yields

Am,d = (−1)m−1 (2m+ 1)!

d! d!m! (m− 2d− 1)!
· 1

m− d
B2m−2d.

Proceeding recursively, we can compute each coefficient Am,r for integers r in the ranges

m
2s+1 ≤ r < m

2s
, for s = 1, 2, . . ., by using previously computed values Am,d for d > r, via

the relation

Am,r = (2r + 1)

(
2r

r

) m∑
d=2r+1

Am,d

(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r.

Finally, we define the following recurrence relation for coefficients Am,r

Proposition 3.3. For integers m and r

Am,r =


(2r + 1)

(
2r
r

)
if r = m

(2r + 1)
(
2r
r

)∑m
d=2r+1 Am,d

(
d

2r+1

) (−1)d−1

d−r
B2d−2r if 0 ≤ r < m

0 if r < 0 or r > m

where Bt are Bernoulli numbers [15]. It is assumed that B1 =
1
2
.

For example,

m/r 0 1 2 3 4 5 6 7

0 1

1 1 6

2 1 0 30

3 1 -14 0 140

4 1 -120 0 0 630

5 1 -1386 660 0 0 2772

6 1 -21840 18018 0 0 0 12012

7 1 -450054 491400 -60060 0 0 0 51480

Table 4. Coefficients Am,r. See OEIS sequences [16, 17].
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Properties of the coefficients Am,r

• Am,m =
(
2m
m

)
.

• Am,r = 0 for r < 0 and r > m.

• Am,r = 0 for m < 0.

• Am,r = 0 for m
2
≤ r < m.

• Am,0 = 1 for m ≥ 0.

• Am,r are all integers up to row m = 11.

• Row sums:
∑m

r=0 Am,r = 22m+1 − 1.

For instance,

n3 =
n∑

k=1

6k(n− k) + 1

n5 =
n∑

k=1

30k2(n− k)2 + 1

n7 =
n∑

k=1

140k3(n− k)3 − 14k(n− k) + 1

n9 =
n∑

k=1

630k4(n− k)4 − 120k(n− k) + 1

n11 =
n∑

k=1

2772k5(n− k)5 + 660k2(n− k)2 − 1386k(n− k) + 1

n13 =
n∑

k=1

51480k7(n− k)7 − 60060k3(n− k)3 + 491400k2(n− k)2 − 450054k(n− k) + 1

4. Main results

Thus, the conjecture (2.1) is true

Theorem 4.1 (Odd power identity). There is a set of coefficients Am,0,Am,1, . . . ,Am,m

such that

n2m+1 =
m∑
r=0

n∑
k=1

Am,rk
r(n− k)r
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In explicit form

n2m+1 =
m∑
r=0

Am,r [1
r · (n− 1)r + 2r · (n− 2)r + 3r · (n− 3)r + · · ·+ nr · (n− n)r]

=
m∑
r=0

Am,r

[
(n− 1)r + (2n− 4)r + (3n− 9)r + (4n− 16)r + · · ·+ (n2 − n2)r

]
For example,

• 12m+1 =
∑m

r=0Am,r [0
r]

• 22m+1 =
∑m

r=0Am,r [1
r + 0r]

• 32m+1 =
∑m

r=0Am,r [2
r + 2r + 0r]

• 42m+1 =
∑m

r=0 Am,r [3
r + 4r + 3r + 0r]

• 52m+1 =
∑m

r=0 Am,r [4
r + 6r + 6r + 4r + 0r]

• 62m+1 =
∑m

r=0 Am,r [5
r + 8r + 9r + 8r + 5r + 0r]

Assuming that x0 = 1 for every x. Interestingly enough that the explicit form above is a

Pascal-type identity, in terms of bivariate function k(n− k) and numbers Am,r, with similar

pattern as Pascal’s identity itself [18]. We may see it by observing the Pascal’s identity

(n+ 1)k+1 − 1 =
∑k

p=0

(
k+1
p

)
(1p + 2p + · · ·+ np). In particular,

n2m+1 − 1 =
m∑
r=0

Am,r [(n− 1)r + (2n− 4)r + (3n− 9)r + (4n− 16)r + · · ·+ (n− 1)r]

Definition 4.2 (Bivariate sum Tm). For integers n, k and m ≥ 0

Tm(n, k) =
m∑
r=0

Am,rk
r(n− k)r

Proposition 4.3 (Symmetry of Tm). For integers n and k

Tm(n, k) = Tm(n, n− k)

4.1. Forward decompositions.

Proposition 4.4 (Forward Recurrence for Tm).

Tm(n, k) =
m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Tm(n+ t, k)
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Proof. The polynomial Tm(n, k) is a polynomial of degree m in n. Thus, the forward differ-

ence with respect to n is ∆m+1Tm(n, k) =
∑m+1

t=0 (−1)t
(
m+1
t

)
Tm(n + t, k) = 0. By isolating

(−1)0
(
m+1
0

)
Tm(n− 0, k) yields Tm(n, k) = (−1)

∑m+1
t=1 (−1)t

(
m+1
t

)
Tm(n+ t, k). □

Proposition 4.5 (Odd power forward decomposition). For non-negative integers m and n

n2m+1 =
n∑

k=1

m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Tm(n+ t, k)

Proof. Direct consequence of (4.1) and forward recurrence (4.4). □

For example: 35 =
(
3
1

)
1023−

(
3
2

)
2643 +

(
3
3

)
5103. Interesting to note that by swapping the

signs yields (−3)5 = −
(
3
1

)
1023 +

(
3
2

)
2643−

(
3
3

)
5103.

Proposition 4.6 (Odd power forward decomposition m− 1). For non-negative integers m

and n

n2m−1 =
n∑

k=1

m∑
t=1

(−1)t+1

(
m

t

)
Tm−1(n+ t, k)

Proof. By setting m → m− 1 to (4.5). □

Proposition 4.7 (Odd power forward decomposition shifted). For non-negative integers m

and n

n2m+1 =
n−1∑
k=0

m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Tm(n+ t, k)

Proof. Direct consequence of (4.1), forward recurrence (4.4), and symmetry (4.3). □

Proposition 4.8 (Odd power forward decomposition m− 1 shifted). For non-negative in-

tegers m and n

n2m−1 =
n−1∑
k=0

m∑
t=1

(−1)t+1

(
m

t

)
Tm−1(n+ t, k)

Proof. By setting m → m− 1 to (4.5) and by symmetry (4.3). □
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4.2. Forward decompositions multifold.

Proposition 4.9 (Forward Recurrence for Tm multifold). Integer s ≥ 1

Tm(n, k) =
m+s∑
t=1

(−1)t+1

(
m+ s

t

)
Tm(n+ t, k)

4.3. Backward decompositions.

Proposition 4.10 (Backward Recurrence for Tm). For non-negative integers m and n

Tm(n, k) =
m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Tm(n− t, k)

Proof. The polynomial Tm(n, k) is a polynomial of degree m in n. Thus, the backward

difference with respect to n is ∇m+1Tm(n, k) =
∑m+1

t=0 (−1)t
(
m+1
t

)
Tm(n − t, k) = 0. By

isolating (−1)0
(
m+1
0

)
Tm(n− 0, k) yields Tm(n, k) = (−1)

∑m+1
t=1 (−1)t

(
m+1
t

)
Tm(n− t, k). □

Proposition 4.11 (Odd power backward decomposition). For non-negative integers m and

n

n2m+1 =
n∑

k=1

m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Tm(n− t, k)

Proof. Direct consequence of (4.1) and backward recurrence (4.10). □

Proposition 4.12 (Odd power backward decomposition shifted). For non-negative integers

m and n

n2m+1 =
n−1∑
k=0

m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Tm(n− t, k)

Proof. Direct consequence of (4.1), backward recurrence (4.10), and symmetry (4.3). □

Corollary 4.13 (Odd power backward decomposition m− 1).

n2m−1 =
n∑

k=1

m∑
t=1

(−1)t+1

(
m

t

)
Tm−1(n− t, k)

Proof. By setting m → m− 1 to (4.11). □
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Corollary 4.14 (Odd power backward decomposition m− 1 shifted).

n2m−1 =
n−1∑
k=0

m∑
t=1

(−1)t+1

(
m

t

)
Tm−1(n− t, k)

Proof. By setting m → m− 1 to (4.12) and by symmetry (4.3). □

4.4. Backward decompositions multifold.

Proposition 4.15 (Backward Recurrence for Tm multifold). Integer s ≥ 1

Tm(n, k) =
m+s∑
t=1

(−1)t+1

(
m+ s

t

)
Tm(n− t, k)

4.5. Binomial forms.

Corollary 4.16 (Binomial form). For integers n and a such that n+ 2a ≥ 0

(n+ 2a)2m+1 =
m∑
r=0

n+a∑
k=−a+1

Am,r(k + a)r(n+ a− k)r

Corollary 4.17 (Shifted binomial form). For integers n and a such that n+ 2a ≥ 0

(n+ 2a)2m+1 =
m∑
r=0

n+a−1∑
k=−a

Am,r(k + a)r(n+ a− k)r

Corollary 4.18 (Centered binomial form). For integers n and a such that n+ a ≥ 0

(n+ a)2m+1 =
m∑
r=0

n+a
2∑

k=−a
2
+1

Am,r

(
k +

a

2

)r (
n+

a

2
− k
)r

Corollary 4.19 (Shifted centered binomial form). For integers n and a such that n−2a ≥ 0

(n+ a)2m+1 =
m∑
r=0

n+a
2
−1∑

k=−a
2

Am,r

(
k +

a

2

)r (
n+

a

2
− k
)r

Proposition 4.20 (Negated binomial form). For integers n and a such that n− 2a ≥ 0

(n− 2a)2m+1 =
m∑
r=0

n−a∑
k=a+1

Am,r(k − a)r(n− a− k)r
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Proof. By observing the summation limits we can see that k runs as k = a + 1, a + 2, a +

3, . . . , a+n−a, which implies that (k−a) = 1, 2, 3, . . . , n. By observing the term (n−k−a)

we see that (n−k−a) = n−1, n−2, n−3, . . . , 0. Thus, by reindexing the sum (n−2a)2m+1 =∑m
r=0

∑n−2a
k=1 Am,r(a + k − a)r(n − (a + k) − a)r the statement (4.20) is equivalent to (4.1)

with setting n → n− 2a. □

Corollary 4.21 (Shifted negated binomial form). For integers n and a such that n−2a ≥ 0

(n− 2a)2m+1 =
m∑
r=0

n−a−1∑
k=a

Am,r(k − a)r(n− a− k)r

Corollary 4.22 (Centered negated binomial form). For integers n and a such that n−a ≥ 0

(n− a)2m+1 =
m∑
r=0

n−a
2
−1∑

k=a
2

Am,r

(
k − a

2

)r (
n− a

2
− k
)r

Corollary 4.23 (Shifted centered negated binomial form). For integers n and a such that

n− a ≥ 0

(n− a)2m+1 =
m∑
r=0

n−a
2∑

k=a
2
+1

Am,r

(
k − a

2

)r (
n− a

2
− k
)r

4.6. Sums of powers.

Proposition 4.24 (Sums of odd powers).

p∑
n=1

n2m+1 =

p∑
n=1

n∑
k=1

m∑
r=0

Am,rk
r(n− k)r

In explicit view

p∑
n=1

n2m+1 =
m∑
r=0

Am,r

{
[0r + 1r + 2r + 3r + · · · (n− 1)r]

+[0r + 2r + 4r + 6r + · · · (2n− 4)r]

+[0r + 3r + 6r + 9r + · · · (3n− 9)r]

+[0r + 4r + 8r + 12r + · · · (4n− 16)r]

+ · · ·+ (p2 − p2)r
}
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Proposition 4.25 (Sums of odd powers forward decomposition). For non-negative integers

m and n

p∑
n=1

n2m+1 =

p∑
n=1

n∑
k=1

m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Tm(n+ t, k)

Proposition 4.26 (Sum of odd powers backward decomposition). For non-negative integers

m and n

p∑
n=1

n2m+1 =

p∑
n=1

n∑
k=1

m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Tm(n− t, k)

4.7. Double bivariate identities.

Definition 4.27 (Double bivaraite sum Rm).

Rm(n, t) =
n∑

k=1

m∑
r=0

Am,rk
r(n+ t− k)r

Proposition 4.28 (Odd power double bivariate).

n2m+1 =
m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Rm(n, t)

In explicit view

n2m+1 =

(
m+ 1

1

)
Rm(n, 1)−

(
m+ 1

2

)
Rm(n, 2) +

(
m+ 1

3

)
Rm(n, 3)

−
(
m+ 1

4

)
Rm(n, 4) + · · ·

For example,

• 23 =
(
2
1

)
26−

(
2
2

)
44

• 25 =
(
3
1

)
242−

(
3
2

)
752 +

(
3
3

)
1562

• 27 =
(
4
1

)
2186−

(
4
2

)
12644 +

(
4
3

)
39062−

(
4
4

)
89000

• 29 =
(
5
1

)
19682−

(
5
2

)
211472 +

(
5
3

)
976562−

(
5
4

)
2972672 +

(
5
4

)
7114562

Proposition 4.29 (Odd power double bivariate negated).

n2m+1 =
m+1∑
t=1

(−1)t+1

(
m+ 1

t

)
Rm(n,−t)
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For example,

• 23 = −
(
2
1

)
10 +

(
2
2

)
28

• 25 =
(
3
1

)
122−

(
3
2

)
512 +

(
3
3

)
1202

• 27 = −
(
4
1

)
1090 +

(
4
2

)
9028−

(
4
3

)
31246 +

(
4
4

)
75304

• 29 =
(
5
1

)
10322−

(
5
2

)
162512 +

(
5
3

)
827522−

(
5
4

)
2632832 +

(
5
4

)
6462962

5. Related research

5.1. Spline approximation for power function. The paper [19] describes a remarkable

result that follows from the odd power identity (4.1). As revealed, by introducing an addi-

tional parameter for upper summation bound in k to (4.1), the resulting family of polynomials

approximate the odd power in some neighborhood of a fixed point.

P (m,X,N) =
m∑
r=0

N∑
k=1

Am,rk
r(X − k)r

For example,

P (2, X, 0) = 0

P (2, X, 1) = 30X2 − 60X + 31

P (2, X, 2) = 150X2 − 540X + 512

P (2, X, 3) = 420X2 − 2160X + 2943

P (2, X, 4) = 900X2 − 6000X + 10624

The following image demonstrates the approximation of fifth power X5 by P (2, X, 4) =

900X2 − 6000X + 10624
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X5

900X2 -6000X +10624

1 2 3 4 5 6
X
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4000

6000

8000

10000

F(X )

Figure 1. Approximation of fifth power X5 by P (2, X, 4). Convergence interval is

4.0 ≤ X ≤ 5.1 with a percentage error E < 1%.

Another remarkable observation is One more interesting observation arises by increasing

the value of N in P (m,X,N) while keeping m fixed. As N increases, the length of the

convergence interval with the odd-power X2m+1 also increases. For instance,

• For P (2, X, 4) and X5, the convergence interval with a percentage error less than 1%

is 4.0 ≤ X ≤ 5.1, with a length L = 1.1

• For P (2, X, 20) and X5, the convergence interval with a percentage error less than

1% is 18.7 ≤ X ≤ 22.9, with a length L = 4.2

• For P (2, X, 120) and X5, the convergence interval with a percentage error less than

1% is 110.0 ≤ X ≤ 134.7, with a length L = 24.7

5.2. Two-sided Faulhaber’s formulas. The paper [20] generalizes the proposition (3.2)

to a new family of polynomials, namely two-sided Faulhaber-like formulas involving Bernoulli

polynomials.
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5.3. Derivatives. The paper [21] reveals a connection between ordinary derivatives of odd

power and partial derivatives of the function

fy(x, z) =
z∑

k=1

y∑
r=0

Ay,rk
r(x− k)r

Let be a fixed point v ∈ N, then ordinary derivative d
dx
gv(u) of the odd-power function

gv(x) = x2v+1 evaluate in point u ∈ R equals to partial derivative (fv)
′
x(u, u) evaluate in

point (u, u) plus partial derivative (fv)
′
z(u, u) evaluate in point (u, u)

d

dx
gv(u) = (fv)

′

x(u, u) + (fv)
′

z(u, u)

6. Future research

Several promising directions emerge from the findings of this manuscript:

• Integration into mathematical literature. The identities presented in this work

do not appear in standard mathematical references, despite their elementary nature

and apparent classical flavor. Notably, related sequences are absent from major

repositories such as the OEIS. Future work should investigate the originality of these

results and aim to contextualize them within the broader mathematical framework.

• Extension of approximation methods. The approximation technique developed

in [19] is generalizable to a broader class of polynomials. In particular, by leveraging

the symmetry property (4.3), one could explore alternative summation domains for

the polynomials P (m,X,N).

• Combinatorial interpretation of Tm(n, k). The polynomial family Tm(n, k), in-

troduced in (4.2), currently lacks a clear combinatorial interpretation. Understand-

ing its structural or enumerative significance would deepen insight into the algebraic

identities presented.
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• Connection with finite differences and derivatives. The binomial form of the

odd power identity (4.16) offers a mechanism to express both finite differences and

classical derivatives of odd powers in terms of the coefficients Am,r.

• q-derivative representation. The general identity (4.1) also suggests a natural ex-

pression for q-derivatives via the coefficientsAm,r, potentially leading to a generalized

notion of differentiation through limiting procedures.

7. Conclusions

This work began with a seemingly elementary interpolation problem and evolved into a

broader investigation of polynomial identities involving odd powers. Starting from the finite

differences of the cubic function, we uncovered a nontrivial identity that served as a base

case for a family of structured decompositions of n2m+1. These identities were expressed

in terms of symmetric bivariate sums with recursively defined coefficients. By employing

systems of linear equations and a generating function approach, we derived both closed-form

expressions and recurrence relations for these identities. The results were further extended

to include binomial forms of odd power identities and formulas for the sums of odd powers.

Computational experiments in Mathematica confirmed all theoretical claims and provided a

toolkit for further exploration. These findings not only contribute novel results to the theory

of polynomial identities but also open pathways to related domains, such as approximation

theory and calculus.
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Application 1: Mathematica programs

We support our theoretical findings with Wolfram Mathematica programs that verify the

main results of this manuscript. All source code and computational notebooks are available

in the GitHub repository. The repository includes the following files:

• unexpected-polynomial-identities-classical-interpolation.m — the pack-

age file where all Mathematica functions are defined. Load it into your session using

filename.m or by evaluating the file with Shift+Enter.

• unexpected-polynomial-identities-classical-interpolation.nb — a working

notebook that demonstrates the usage of these functions to validate the manuscript’s

results.

Definitions.

Mathematica Function Validates / Prints

A[m, r] Coefficient Am,r (Definition 3.3)

PrintTriangleA[m] Triangle of Am,r values

OddPowerIdentity[n, m] Theorem 4.1

OddPowerIdentitySimplified[n, m] Simplified form of Theorem 4.1

BivariateSumT[m, n, k] Definition 4.2

TableFormBivariateSumT[m, rows] Triangle view of Tm(n, k)

https://github.com/kolosovpetro/surprising-polynomial-identities-classical-interpolation
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Forward decompositions.

Mathematica Function Validates / Prints

ForwardRecurrenceForT[m, n, k] Proposition 4.4

OddPowerForwardDecomposition[n, m] Proposition 4.5

OddPowerForwardDecompositionMMinus1[n, m] Proposition 4.6

OddPowerForwardDecompositionShifted[n, m] Proposition 4.7

OddPowerForwardDecompositionMMinus1Shifted[n, m] Proposition 4.8

TableFormForwardRecurrenceForT[m, rows] Triangle view of Proposition 4.4
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Backward decompositions.

Mathematica Function Validates / Prints

BackwardRecurrenceForT[m, n, k] Proposition 4.10

OddPowerBackwardDecomposition[n, m] Proposition 4.11

OddPowerBackwardDecompositionShifted[n, m] Proposition 4.12

OddPowerBackwardDecompositionMMinus1[n, m] Corollary 4.13

OddPowerBackwardDecompositionMMinus1Shifted[n, m] Corollary 4.14

TableFormBackwardRecurrenceForT[m, rows] Triangle view of Proposition 4.10
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Binomial forms.

Mathematica Function Validates / Prints

BinomialForm[m, n, a] Corollary 4.16

ShiftedBinomialForm[m, n, a] Corollary 4.17

CenteredBinomialForm[m, n, a] Corollary 4.18

ShiftedCenteredBinomialForm[m, n, a] Corollary 4.19

NegatedBinomialForm[m, n, a] Proposition 4.20

ShiftedNegatedBinomialForm[m, n, a] Corollary 4.21

CenteredNegatedBinomialForm[m, n, a] Corollary 4.22

ShiftedCenteredNegatedBinomialForm[m, n, a] Corollary 4.23
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Application 2: Examples of coefficients A

Consider the proposition (3.3) of the coefficients Am,r, it can be written as

Am,r =



(2r + 1)
(
2r
r

)
, if r = m;∑m

d≥2r+1 Am,d (2r + 1)

(
2r

r

)(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r︸ ︷︷ ︸

T (d,r)

, if 0 ≤ r < m;

0, if r < 0 or r > m,

Let be the definition of the polynomial T (d, r)

Definition 7.1.

T (d, r) = (2r + 1)

(
2r

r

)(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

Example 7.2. Let be m = 2 so first we get A2,2

A2,2 = 5

(
4

2

)
= 30

Then A2,1 = 0 because Am,d is zero in the range m/2 ≤ d < m means that zero for d in

1 ≤ d < 2. Finally, the coefficient A2,0 is

A2,0 =
2∑

d≥1

A2,d · T (d, 0) = A2,1 · T (1, 0) +A2,2 · T (2, 0)

= 30 · 1

30
= 1

Example 7.3. Let be m = 3 so that first we get A3,3

A3,3 = 7

(
6

3

)
= 140

Then A3,2 = 0 because Am,d is zero in the range m/2 ≤ d < m means that zero for d in

2 ≤ d < 3. The A3,1 coefficient is non-zero and calculated as

A3,1 =
3∑

d≥3

A3,d · T (d, 1) = A3,3 · T (3, 1) = 140 ·
(
− 1

10

)
= −14
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Finally, the coefficient A3,0 is

A3,0 =
3∑

d≥1

A3,d · T (d, 0) = A3,1 · T (1, 0) +A3,2 · T (2, 0) +A3,3 · T (3, 0)

= −14 · 1
6
+ 140 · 1

42
= 1

Example 7.4. Let be m = 4 so that first we get A4,4

A4,4 = 9

(
8

4

)
= 630

Then A4,3 = 0 and A4,2 = 0 because Am,d is zero in the range m/2 ≤ d < m means that

zero for d in 2 ≤ d < 4. The value of the coefficient A4,1 is non-zero and calculated as

A4,1 =
4∑

d≥3

A4,d · T (d, 1) = A4,3 · T (3, 1) +A4,4 · T (4, 1) = 630 ·
(
− 4

21

)
= −120

Finally, the coefficient A4,0 is

A4,0 =
4∑

d≥1

A4,d · T (d, 0) = A4,1 · T (1, 0) +A4,4 · T (4, 0) = −120 · 1
6
+ 630 · 1

30
= 1

Example 7.5. Let be m = 5 so that first we get A5,5

A5,5 = 11

(
10

5

)
= 2772

Then A5,4 = 0 and A5,3 = 0 because Am,d is zero in the range m/2 ≤ d < m means that

zero for d in 3 ≤ d < 5. The value of the coefficient A5,2 is non-zero and calculated as

A5,2 =
5∑

d≥5

A5,d · T (d, 2) = A5,5 · T (5, 2) = 2772 · 5

21
= 660

The value of the coefficient A5,1 is non-zero and calculated as

A5,1 =
5∑

d≥3

A5,d · T (d, 1) = A5,3 · T (3, 1) +A5,4 · T (4, 1) +A5,5 · T (5, 1)

= 2772 ·
(
−1

2

)
= −1386
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Finally, the coefficient A5,0 is

A5,0 =
5∑

d≥1

A5,d · T (d, 0) = A5,1 · T (1, 0) +A5,2 · T (2, 0) +A5,5 · T (5, 0)

= −1386 · 1
6
+ 660 · 1

30
+ 2772 · 5

66
= 1
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Application 3: Systems of linear equations examples

Example 7.6. Let be m = 3 so that we have the following relation defined by (4.1)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
+Am,3

[
1

420
(−10n+ 7n3 + 3n7)

]
−n7 = 0

Multiplying by 420 right-hand side and left-hand side, we get

420A3,0n+ 70A2,1(−n+ n3) + 14A2,2(−n+ n5) +A3,3(−10n+ 7n3 + 3n7)− 420n7 = 0

Opening brackets and rearranging the terms gives

420A3,0n− 70A3,1 + 70A3,1n
3 − 14A3,2n+ 14A3,2n

5

− 10A3,3n+ 7A3,3n
3 + 3A3,3n

7 − 420n7 = 0

Combining the common terms yields

n(420A3,0 − 70A3,1 − 14A3,2 − 10A3,3)

+ n3(70A3,1 + 7A3,3) + n514A3,2 + n7(3A3,3 − 420) = 0

Therefore, the system of linear equations follows

420A3,0 − 70A3,1 − 14A3,2 − 10A3,3 = 0

70A3,1 + 7A3,3 = 0

A3,2 − 30 = 0

3A3,3 − 420 = 0

Solving it, we get 

A3,3 = 140

A3,2 = 0

A3,1 = − 7
70
A3,3 = −14

A3,0 =
(70A3,1+10A3,3)

420
= 1
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So that odd-power identity (4.1) holds

n7 =
n∑

k=1

140k3(n− k)3 − 14k(n− k) + 1

It is also clearly seen why the above identity is true evaluating the terms 140k3(n − k)3 −

14k(n− k) + 1 over 0 ≤ k ≤ n as the OEIS sequence A300785 [23] shows

n/k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 127 1

3 1 1093 1093 1

4 1 3739 8905 3739 1

5 1 8905 30157 30157 8905 1

6 1 17431 71569 101935 71569 17431 1

7 1 30157 139861 241753 241753 139861 30157 1

Table 5. Values of T3(n, k) = 140k3(n − k)3 − 14k(n − k) + 1. See the sequence

A300785 in OEIS [23].

Example 7.7. Let be m = 4 so that we have the following relation defined by (4.1)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
+Am,3

[
1

420
(−10n+ 7n3 + 3n7)

]
+Am,4

[
1

630
(−21n+ 20n3 + n9)

]
− n9 = 0

Multiplying by 630 right-hand side and left-hand side, we get

630A4,0n+ 105A4,1(−n+ n3) + 21A4,2(−n+ n5)

+
3

2
A4,3(−10n+ 7n3 + 3n7)

+A4,4(−21n+ 20n3 + n9)− 630n9 = 0

https://oeis.org/A300785
https://oeis.org/A300785
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Opening brackets and rearranging the terms gives

630A4,0n− 105A4,1n+ 105A4,1n
3 − 21A4,2n+ 21A4,2n

5

− 3

2
A4,3 · 10n+

3

2
A4,3 · 7n3 +

3

2
A4,3 · 3n7

− 21A4,4n+ 20A4,4n
3 +A4,4n

9 − 630n9 = 0

Combining the common terms yields

n(630A4,0 − 105A4,1 − 21A4,2 − 15A4,3 − 21A4,4)

+ n3

(
105A4,1 +

21

2
A4,3 + 20A4,4

)
+ n5(21A4,2)

+ n7

(
9

2
A4,3

)
+ n9(A4,4 − 630) = 0

Therefore, the system of linear equations follows

630A4,0 − 105A4,1 − 21A4,2 − 15A4,3 − 21A4,4 = 0

105A4,1 +
21
2
A4,3 + 20A4,4 = 0

A4,2 = 0

A4,3 = 0

A4,4 − 630 = 0

Solving it, we get 

A4,4 = 630

A4,3 = 0

A4,2 = 0

A4,1 = − 20
105

A4,4 = −120

A4,0 =
105A4,1+21A4,4

630
= 1

So that odd-power identity (4.1) holds

n9 =
n∑

k=1

630k4(n− k)4 − 120k(n− k) + 1
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Application 4: Related OEIS sequences

OEIS ID Description Citation

A287326 Numerical triangle, row sums give third power [7]

A300656 Numerical triangle, row sums give fifth power [11]

A300785 Numerical triangle, row sums give seventh power [23]

A302971 Numerators of the coefficient Am,r [16]

A304042 Denominators of the coefficient Am,r [17]

A320047 Coefficients U(m, l, k) for m = 1 defined by identity (4.1) [24]

A316349 Coefficients U(m, l, k) for m = 2 defined by identity (4.1) [25]

A316387 Coefficients U(m, l, k) for m = 3 defined by identity (4.1) [26]

A094053 Triangle read by rows: T (n, k) = k(n− k) [27]

A000217 Triangular numbers:
(
n+1
2

)
[28]
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