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Abstract. In this short report particular pattern, that is sequence A287326

in OEIS, [4], [3], [2], which shows us necessary items to expand x3, x ∈ N
will be generalized and obtained results will be applied to show expansion of
power function f(x) = xn, (x, n) ∈ N. In Section 3 received results are used

to obtain finite differences of power function f(x).
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1. Introduction and Main Results

In recent work ([3], eq. 1.15) for each positive integer x was shown the identity

x3 = x + (x− 0) · 3! · 0 + (x− 1) · 3! · 1 + (x− 2) · 3! · 2 + · · ·(1.1)

· · · + (x− (x− 1)) · 3! · (x− 1)

Particularizing expression (1.3) and applying compact sigma notation, one could
have

(1.2) x3 =

x−1∑
m=0

3! ·mx− 3! ·m2 + 1, x ∈ N

Lets build a triangle using 3! · kn− 3! · k2 + 1 over k and n, where n - denotes the
row, k - corresponding item of the row
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(1.3)

1

1 1

1 7 1

1 13 13 1

1 19 25 19 1

Figure 1. Triangle generated by 3! · kx− 3! · k2 + 1, 0 ≤ k ≤ n = 4, sequence
A287326 in OEIS, [4], [3], [2].

The main property of above triangle is

Property 1.4. Summation of each n-th row of Triangle (1.2) from k = 0 to n− 1
returns us n3.

Reader could notice that Triangle (1.2) has similar distribution to Pascal’s tri-
angle [1], [5], hereby the follow questions is stated:

Question 1.5. Has the Triangle (1.2) any connection with Pascal’s Triangle, and
is it exist similar patterns in order to receive expansion of xj j > 3?

To answer to the question (1.4), let rewrite and review our Triangle (1.2) again

(1.6)

1

1 1

1 7 1

1 13 13 1

1 19 25 19 1

Figure 2. Triangle (1.2).

Let take away from each item k, such that 0 < k < n of Triangle (1.5) the value of
n2, then we have

(1.7)

1

1 1

1 3 1

1 4 4 1

1 3 9 3 1

Figure 3. Triangle generated by

{
3! · kn− 3! · k2 + 1− n2, 0 < k < n
1, k ∈ {0, n}

We can observe that summation of n-th row of Triangle (1.6) over k from 0 to n−1
returns us the n2. It’s very easy to see that removing n1 from each item k, such
that 0 < k < n of Triangle (1.6) and summing up received n-th rows over k from 0
to n− 1 will result n1, let show it
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https://oeis.org/


ON THE NUMERICAL EXPANSION OF MONOMIALS 3

(1.8)

1

1 1

1 1 1

1 1 1 1

1 -1 5 -1 1

Figure 4. Triangle generated by

{
3! · kn− 3! · k2 + 1− n2 − n1, 0 < k < n
1, k ∈ {0, n}

Review the Triangle (1.7), we can say that above statement holds. Reviewing our
Triangles (1.2), (1.6), (1.7), let define generalized item VM (n, k)

Definition 1.9.

(1.10) VM (n, k) :=

{
n0 + n1 + · · ·+ nM , 0 < k < n
1, k ∈ {0, n}

Property 1.11. From definition (1.8) follows the equality between items VM (n, k)
in range k ∈ {1, n− 1}

∀k ∈ {1, n− 1} : VM (n, k) = VM (n, k + 1 ≤ n− 1)(1.12)

= VM (n, k + 2 ≤ n− 1)

. . .

= VM (n, k + j ≤ n− 1), j ∈ N

Note that k -th items of Triangles (1.2), (1.6), (1.7), such that 0 < k < n are
V0(n, k), V1(n, k), V2(n, k), respectively. Reviewing our triangles Triangles (1.2),
(1.6), (1.7), we could observe the identity

(1.13) nM =

n−1∑
k=0

VM−1(n, k), M ∈ {1, 2, 3}

Example 1.14. Review (1.13), let be n = 4, M = 3, then

43 = V2(4, 0) + V2(4, 1) + V2(4, 2) + V2(4, 3)(1.15)

= 1 + 1 + 4 + 42︸ ︷︷ ︸
V2(4, 1)

+ 1 + 4 + 42︸ ︷︷ ︸
V2(4, 2)

+ 1 + 4 + 42︸ ︷︷ ︸
V2(4, 3)

= 1 + 3(40 + 41 + 42) = 1 + 21 + 21 + 21

Let be Theorem

Theorem 1.16. Each power function f(x) = xn such that (x, n) ∈ N could be
expanded next way

(1.17) xn =

x−1∑
k=0

Vn−1(x, k), ∀(x, n) ∈ N

Proof. Recall Triangle, consisting of items V0(x, k), that is analog of (1.7)
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(1.18)

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

Figure 5. Triangle generated by V0(x, k), sequence A000012 in OEIS, [6], [2].

Obviously, summation over rows of triangle (1.16) from 0 to x− 1 gives us the x1.
Let show a second power by means of V0(x, k), we have accordingly

(1.19) x2 = 1 + (V0(x, 1) + x)︸ ︷︷ ︸
V1(x, 1)

+ (V0(x, 2) + x)︸ ︷︷ ︸
V1(x, 2)

+ · · ·+ (V0(x, x− 1) + x)︸ ︷︷ ︸
V1(x, x−1)

For example, consider the sum of 3-rd row of triangle A000012, then we receive 31,
then by power property

xn =

x−1∑
k=0

xn−1

we have to add twice by 31 to receive 32, ie

32 = 1 + (3 + 1) + (3 + 1)

Generalizing above result, we have identity

x−1∑
k=0

Vn−1(x, k) =

= 1 + (x0 + x1 + · · ·+ xn−1) + · · ·+ (x0 + x1 + · · ·+ xn−1)︸ ︷︷ ︸
x−1 times

= 1 + (x− 1)(x0 + x1 + x2 + · · ·+ xn−1) = 1 + (x− 1)Vn−1(x, k)(1.20)

= x + (x− 1)x + (x− 1)x2 + (x− 1)x3 + · · ·+ (x− 1)xn−1

= 1 + xn − x0 = xn, (x, n) ∈ N

This completes the proof. �

Also, (1.18) could be rewritten as

xn = 1 + (x− 1) + (x− 1)x + · · ·+ (x− 1)xn−1︸ ︷︷ ︸
n times

(1.21)

= 1 +

n−1∑
k=0

(x− 1)xk, ∀(x, n) ∈ N(1.22)

Define the power function f(x) = xn, such that (x, n) ∈ N and exponential
function g(x, k) = xk, x ∈ N, then expression (1.20) shows us the relation between
exponential and power functions with natural base and exponent

(1.23) f(x) = 1 +

n−1∑
k=0

g(x, k + 1)− g(x, k)
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Reader could also notice the connection between Maclaurin expansion 1
1−x = x0 +

x1 + x2 + x3 + · · · , −1 < x < 1 and (1.18), that is

(1.24)
xn

x− 1
− 1

x− 1︸ ︷︷ ︸
− 1

1−x

= x0 + x1 + x2 + · · ·+ xn−1, ∀(x, n) ∈ N

Next, let review and apply our results on Binomial Related expansion of mono-
mial f(x) = xn, (x, n) ∈ N, that is summation of finite difference of power with
increment h = 1

xn =

x−1∑
k=0

∆h[xn](1.25)

=
x−1∑
k=0

nkn−1 +

(
n

2

)
kn−2 + · · ·+

(
n

n− 1

)
k + 1︸ ︷︷ ︸

∆h[xn]=(x+h)n−xn

=

x−1∑
j=0

n∑
k=1

(
n

k

)
jn−k, x ∈ N

Then, it follows for each (x,m, n) ∈ N

xn+1 =

x−1∑
j=0

n+1∑
k=1

(
n

k

)
jn+1−k =

x−1∑
j=0

n∑
k=1

(
n

k

)
jn−k + xn(1.26)

xn+m =

x−1∑
j=0

n∑
k=1

(
n

k

)
jn−k + xn + xn+1 + · · ·+ xn+m−1, x ∈ N

To show one more property of VM (n, k), let build Triangle given V2(n, k)

1

1 1

1 3 1

1 4 4 1

1 5 5 5 1

1 6 6 6 6 1

1 7 7 7 7 7 1

1 8 8 8 8 8 8 1

Figure 6. Triangle generated by V2(n, k) over n from 0 to 9.

Reviewing above triangle, we could observe that summation of intermediate column
gives us well known identity,

(1.27) x2 =

|x|−1∑
k=0

2k + 1, x ∈ Z

Generalizing above expression, we receive

(1.28) xn =

n−1∑
k=0

Vn−1(2k, k), ∀(x, n) ∈ N
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More detailed,

(1.29) Vn(2k, k) =

{
(2k)0 + (2k)1 + · · ·+ (2k)n, 0 < k < n
1, k ∈ {0, n}

Then

n−1∑
k=0

Vn−1(2k, k) =

= 1 + (1 + 2 + · · ·+ 2n−1) + (1 + 2 · 21 + · · ·+ (2 · 2)n−1)(1.30)

+ (1 + 2 · 3 · · ·+ (2 · 3)n−1) + · · ·(1.31)

+ (1 + 2 · (n− 1) · · ·+ (2 · (n− 1))n−1) = xn(1.32)

Note that upper expression (1.26) is partial case of (1.24), when n+m = 2. Recall
the Binomial (x + y)n, by means of (1.19) we have expansion

(1.33) (x + y)n = 1 + (x + y − 1)Vn−1(x + y, k)

Hereby, let be lemma

Lemma 1.34. Relation between binomial expansion and Vn−1(x, k)

(x + y)n =

n∑
k=0

(
n

k

)
xn−kyk = 1 + (x + y − 1)Vn−1(x + y, k)(1.35)

= 1 + (x + y − 1)(x + y)0 + (x + y − 1)(x + y)1 + · · ·(1.36)

+ (x + y − 1)(x + y)n−1(1.37)

= 1 + x((x + y)0 + (x + y)1 + (x + y)2 + · · ·+ (x + y)n−1)(1.38)

+ y((x + y)0 + (x + y)1 + (x + y)2 + · · ·+ (x + y)n−1)(1.39)

− ((x + y)0 + (x + y)1 + (x + y)2 + · · ·+ (x + y)n−1)(1.40)

Multinomial case could be built as well as Binomial, hereby

(x1 + x2 + · · ·+ xk) =(1.41)

= 1 + (x1 + x2 + · · ·+ xk − 1)(x1 + x2 + · · ·+ xk)0(1.42)

+ (x1 + x2 + · · ·+ xk − 1)(x1 + x2 + · · ·+ xk)1(1.43)

+ (x1 + x2 + · · ·+ xk − 1)(x1 + x2 + · · ·+ xk)2(1.44)

...(1.45)

+ (x1 + x2 + · · ·+ xk − 1)(x1 + x2 + · · ·+ xk)n−1(1.46)

2. Finite Differences

In this section let apply received in previous section results to show finite differ-
ences of power function f(x) = xn, such that (x, n) ∈ N. From (1.19) we know
identity

(2.1) f(x) = 1 + (x− 1)(x0 + x1 + x2 + · · ·+ xn−1) = 1 + (x− 1)Vn−1(x, k) = xn
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Then, its finite difference ∆f(x) suppose to be

∆f(x) = f(x + 1)− f(x) =(2.2)

= [1 + x((x + 1)0 + (x + 1)1 + (x + 1)2 + · · ·+ (x + 1)n−1)︸ ︷︷ ︸
xVn−1(x+1, k)

](2.3)

− [1 + (x− 1)(x0 + x1 + x2 + · · ·+ xn−1)︸ ︷︷ ︸
(x−1)Vn−1(x, k)=xn−1

](2.4)

= xVn−1(x + 1, k)− (x− 1)Vn−1(x, k)(2.5)

= xVn−1(x + 1, k)− xn − 1(2.6)

= xVn−1(x + 1, k)− xVn−1(x, k) + Vn−1(x, k)(2.7)

= x[Vn−1(x + 1, k)− Vn−1(x, k)] + Vn−1(x, k), k 6∈ {0, n}(2.8)

For example, let be x = 3, n = 3, then we have

∆f(3) = f(4)− f(3)(2.9)

= [1 + 3((3 + 1)0 + (3 + 1)1 + (3 + 1)2)](2.10)

− [1 + (3− 1)(30 + 31 + 32)](2.11)

= [3((3 + 1)0 + (3 + 1)1 + (3 + 1)2)](2.12)

− [(3− 1)(30 + 31 + 32)](2.13)

= 63− 26 = 37(2.14)

Let show high order finite difference of power f(x) = xn by means of Vn−1(x, k),
that is

(2.15) ∆mf(x) =

m−1∑
k=0

(x−k)[Vn−1(x+m−k, t 6= 0)−Vn−1(x+m−k+1, t 6= 0)]

Derivative of f(x) = xn could be written regarding to

(2.16)
df(x)

dx
= lim

h→0

[
xVn−1(x + 1, k)− (x− 1)Vn−1(x, k)

h

]
3. Conclusion

In this paper particular pattern, that is sequence A287326 in OEIS, [4], [3], [2].,
which shows us necessary items to expand x3, x ∈ N was generalized and obtained
results were applied to show expansion of f(x) = xn, (x, n) ∈ N. Additionally,
relation between exponential and power functions with natural base and exponent
was shown by means of expression (1.20).
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