ON THE NUMERICAL EXPANSION OF MONOMIALS

KOLOSOV PETRO

Abstract. In this short report particular pattern, that is sequence [A287326](https://oeis.org/A287326) in [OEIS,](https://oeis.org/) [\[4\]](#page-6-0), [\[3\]](#page-6-1), [\[2\]](#page-6-2), which shows us necessary items to expand x^3 , $x \in \mathbb{N}$ will be generalized and obtained results will be applied to show expansion of power function $f(x) = x^n$, $(x, n) \in \mathbb{N}$. In Section 3 received results are used to obtain finite differences of power function $f(x)$.

Keywords. Power function, Exponential function, Monomial 2010 Math. Subject Class. 30BXX ORCID: [0000-0002-6544-8880](http://orcid.org/0000-0002-6544-8880)

CONTENTS

1. Introduction and Main Results

In recent work $(3]$, eq. 1.15) for each positive integer x was shown the identity

$$
(1.1) \ x^3 = x + (x - 0) \cdot 3! \cdot 0 + (x - 1) \cdot 3! \cdot 1 + (x - 2) \cdot 3! \cdot 2 + \cdots
$$

 \cdots + $(x - (x - 1)) \cdot 3! \cdot (x - 1)$

Particularizing expression (1.3) and applying compact sigma notation, one could have

(1.2)
$$
x^3 = \sum_{m=0}^{x-1} 3! \cdot mx - 3! \cdot m^2 + 1, \quad x \in \mathbb{N}
$$

Lets build a triangle using $3! \cdot k\overline{n} - 3! \cdot k^2 + 1$ over k and n, where n - denotes the row, k - corresponding item of the row

Date: February 14, 2018.

[kolosovp94@gmail.com.](mailto:kolosovp94@gmail.com)

Figure 1. Triangle generated by $3! \cdot kx - 3! \cdot k^2 + 1$, $0 \le k \le n = 4$, sequence [A287326](https://oeis.org/A287326) in [OEIS,](https://oeis.org/) [\[4\]](#page-6-0), [\[3\]](#page-6-1), [\[2\]](#page-6-2).

The main property of above triangle is

Property 1.4. Summation of each n-th row of Triangle [\(1.2\)](#page-1-0) from $k = 0$ to $n - 1$ returns us n^3 .

Reader could notice that Triangle [\(1.2\)](#page-1-0) has similar distribution to Pascal's triangle [\[1\]](#page-6-5), [\[5\]](#page-6-6), hereby the follow questions is stated:

Question 1.5. Has the Triangle [\(1.2\)](#page-1-0) any connection with Pascal's Triangle, and is it exist similar patterns in order to receive expansion of x^j j > 3?

To answer to the question [\(1.4\)](#page-1-1), let rewrite and review our Triangle [\(1.2\)](#page-1-0) again

Let take away from each item k, such that $0 < k < n$ of Triangle [\(1.5\)](#page-1-2) the value of n^2 , then we have

(1.7) 1 1 1 1 3 1 1 4 4 1 1 3 9 3 1

Figure 3. Triangle generated by $\begin{cases} 3! \cdot k n - 3! \cdot k^2 + 1 - n^2, & 0 < k < n \end{cases}$ 1, $k \in \{0, n\}$

We can observe that summation of n-th row of Triangle [\(1.6\)](#page-1-3) over k from 0 to $n-1$ returns us the n^2 . It's very easy to see that removing n^1 from each item k, such that $0 < k < n$ of Triangle [\(1.6\)](#page-1-3) and summing up received *n*-th rows over k from 0 to $n-1$ will result n^1 , let show it

(1.8) 1 1 1 1 1 1 1 1 1 1 1 -1 5 -1 1

Figure 4. Triangle generated by $\begin{cases} 3! \cdot kn - 3! \cdot k^2 + 1 - n^2 - n^1, & 0 < k < n \end{cases}$ 1, $k \in \{0, n\}$

Review the Triangle [\(1.7\)](#page-2-0), we can say that above statement holds. Reviewing our Triangles [\(1.2\)](#page-1-0), [\(1.6\)](#page-1-3), [\(1.7\)](#page-2-0), let define generalized item $V_M(n, k)$

Definition 1.9.

(1.10)
$$
V_M(n, k) := \begin{cases} n^0 + n^1 + \dots + n^M, \ 0 < k < n \\ 1, \ k \in \{0, \ n\} \end{cases}
$$

Property 1.11. From definition [\(1.8\)](#page-2-1) follows the equality between items $V_M(n, k)$ in range $k \in \{1, n-1\}$

$$
(1.12) \quad \forall k \in \{1, n-1\}: \ V_M(n, k) = V_M(n, k+1 \le n-1)
$$

= $V_M(n, k+2 \le n-1)$
...
= $V_M(n, k+j \le n-1), j \in \mathbb{N}$

Note that k-th items of Triangles [\(1.2\)](#page-1-0), [\(1.6\)](#page-1-3), [\(1.7\)](#page-2-0), such that $0 < k < n$ are $V_0(n, k)$, $V_1(n, k)$, $V_2(n, k)$, respectively. Reviewing our triangles Triangles [\(1.2\)](#page-1-0), $(1.6), (1.7),$ $(1.6), (1.7),$ $(1.6), (1.7),$ $(1.6), (1.7),$ we could observe the identity

(1.13)
$$
n^{M} = \sum_{k=0}^{n-1} V_{M-1}(n, k), \qquad M \in \{1, 2, 3\}
$$

Example 1.14. Review (1.13), let be $n = 4$, $M = 3$, then

(1.15)
$$
4^3 = V_2(4, 0) + V_2(4, 1) + V_2(4, 2) + V_2(4, 3)
$$

$$
= 1 + \underbrace{1 + 4 + 4^2}_{V_2(4, 1)} + \underbrace{1 + 4 + 4^2}_{V_2(4, 2)} + \underbrace{1 + 4 + 4^2}_{V_2(4, 3)}
$$
\n
$$
= 1 + 3(4^0 + 4^1 + 4^2) = 1 + 21 + 21 + 21
$$

Let be Theorem

Theorem 1.16. Each power function $f(x) = x^n$ such that $(x, n) \in \mathbb{N}$ could be expanded next way

(1.17)
$$
x^{n} = \sum_{k=0}^{x-1} V_{n-1}(x, k), \qquad \forall (x, n) \in \mathbb{N}
$$

Proof. Recall Triangle, consisting of items $V_0(x, k)$, that is analog of [\(1.7\)](#page-2-0)

(1.18) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5. Triangle generated by $V_0(x, k)$, sequence [A000012](https://oeis.org/A000012) in [OEIS,](https://oeis.org/) [\[6\]](#page-7-0), [\[2\]](#page-6-2).

Obviously, summation over rows of triangle (1.16) from 0 to $x - 1$ gives us the $x¹$. Let show a second power by means of $V_0(x, k)$, we have accordingly

$$
(1.19) \qquad x^2 = 1 + \underbrace{(V_0(x, 1) + x)}_{V_1(x, 1)} + \underbrace{(V_0(x, 2) + x)}_{V_1(x, 2)} + \dots + \underbrace{(V_0(x, x - 1) + x)}_{V_1(x, x - 1)}
$$

For example, consider the sum of 3-rd row of triangle $A000012$, then we receive $3¹$, then by power property

$$
x^n = \sum_{k=0}^{x-1} x^{n-1}
$$

we have to add twice by 3^1 to receive 3^2 , ie

$$
3^2 = 1 + (3+1) + (3+1)
$$

Generalizing above result, we have identity

$$
\sum_{k=0}^{x-1} V_{n-1}(x, k) =
$$
\n
$$
= 1 + \underbrace{(x^0 + x^1 + \dots + x^{n-1}) + \dots + (x^0 + x^1 + \dots + x^{n-1})}_{x-1 \text{ times}}
$$
\n(1.20)\n
$$
= 1 + (x - 1)(x^0 + x^1 + x^2 + \dots + x^{n-1}) = 1 + (x - 1)V_{n-1}(x, k)
$$
\n
$$
= x + (x - 1)x + (x - 1)x^2 + (x - 1)x^3 + \dots + (x - 1)x^{n-1}
$$
\n
$$
= 1 + x^n - x^0 = x^n, (x, n) \in \mathbb{N}
$$

This completes the proof. $\hfill \square$

Also, [\(1.18\)](#page-3-1) could be rewritten as

(1.21)
$$
x^{n} = 1 + \underbrace{(x-1) + (x-1)x + \cdots + (x-1)x^{n-1}}_{n \text{ times}}
$$

$$
= 1 + \sum_{k=0}^{n-1} (x-1)x^{k}, \forall (x, n) \in \mathbb{N}
$$

Define the power function $f(x) = x^n$, such that $(x, n) \in \mathbb{N}$ and exponential function $g(x, k) = x^k$, $x \in \mathbb{N}$, then expression [\(1.20\)](#page-3-2) shows us the relation between exponential and power functions with natural base and exponent

(1.23)
$$
f(x) = 1 + \sum_{k=0}^{n-1} g(x, k+1) - g(x, k)
$$

$$
\Box
$$

Reader could also notice the connection between Maclaurin expansion $\frac{1}{1-x} = x^0 +$ $x^1 + x^2 + x^3 + \cdots$, $-1 < x < 1$ and [\(1.18\)](#page-3-1), that is

$$
(1.24) \qquad \frac{x^n}{x-1} - \underbrace{\frac{1}{x-1}}_{-\frac{1}{1-x}} = x^0 + x^1 + x^2 + \dots + x^{n-1}, \ \forall (x, \ n) \in \mathbb{N}
$$

Next, let review and apply our results on Binomial Related expansion of monomial $f(x) = x^n$, $(x, n) \in \mathbb{N}$, that is summation of finite difference of power with increment $h = 1$

(1.25)
$$
x^{n} = \sum_{k=0}^{x-1} \Delta_{h}[x^{n}]
$$

$$
= \sum_{k=0}^{x-1} \frac{nk^{n-1} + {n \choose 2}k^{n-2} + \dots + {n \choose n-1}k + 1}{\Delta_{h}[x^{n}] = (x+h)^{n}-x^{n}}
$$

$$
= \sum_{j=0}^{x-1} \sum_{k=1}^{n} {n \choose k} j^{n-k}, x \in \mathbb{N}
$$

Then, it follows for each $(x, m, n) \in \mathbb{N}$

$$
(1.26) \quad x^{n+1} = \sum_{j=0}^{x-1} \sum_{k=1}^{n+1} {n \choose k} j^{n+1-k} = \sum_{j=0}^{x-1} \sum_{k=1}^{n} {n \choose k} j^{n-k} + x^n
$$

$$
x^{n+m} = \sum_{j=0}^{x-1} \sum_{k=1}^{n} {n \choose k} j^{n-k} + x^n + x^{n+1} + \dots + x^{n+m-1}, \ x \in \mathbb{N}
$$

To show one more property of $V_M(n, k)$, let build Triangle given $V_2(n, k)$

1 1 1 1 3 1 1 4 4 1 1 5 5 5 1 1 6 6 6 6 1 1 7 7 7 7 7 1 1 8 8 8 8 8 8 1

Figure 6. Triangle generated by $V_2(n, k)$ over n from 0 to 9.

Reviewing above triangle, we could observe that summation of intermediate column gives us well known identity,

(1.27)
$$
x^2 = \sum_{k=0}^{|x|-1} 2k + 1, \ x \in \mathbb{Z}
$$

Generalizing above expression, we receive

(1.28)
$$
x^{n} = \sum_{k=0}^{n-1} V_{n-1}(2k, k), \ \forall (x, n) \in \mathbb{N}
$$

More detailed,

(1.29)
$$
V_n(2k, k) = \begin{cases} (2k)^0 + (2k)^1 + \dots + (2k)^n, \ 0 < k < n \\ 1, \ k \in \{0, \ n\} \end{cases}
$$

Then

$$
\sum_{k=0}^{n-1} V_{n-1}(2k, k) =
$$
\n(1.30) = 1 + (1 + 2 + \dots + 2ⁿ⁻¹) + (1 + 2 \cdot 2¹ + \dots + (2 \cdot 2)ⁿ⁻¹)
\n(1.31) + (1 + 2 \cdot 3 \dots + (2 \cdot 3)ⁿ⁻¹) + \dots
\n(1.32) + (1 + 2 \cdot (n - 1) \dots + (2 \cdot (n - 1))ⁿ⁻¹) = xⁿ

Note that upper expression [\(1.26\)](#page-4-0) is partial case of [\(1.24\)](#page-4-1), when $n + m = 2$. Recall the Binomial $(x + y)^n$, by means of (1.19) we have expansion

(1.33)
$$
(x+y)^n = 1 + (x+y-1)V_{n-1}(x+y, k)
$$

Hereby, let be lemma

Lemma 1.34. Relation between binomial expansion and $V_{n-1}(x, k)$

Multinomial case could be built as well as Binomial, hereby

 $(1.4\omega_1 + x_2 + \cdots + x_k) =$ $= 1 + (x_1 + x_2 + \cdots + x_k - 1)(x_1 + x_2 + \cdots + x_k)^0$ (1.42) + $(x_1 + x_2 + \cdots + x_k - 1)(x_1 + x_2 + \cdots + x_k)^1$ (1.43) + $(x_1 + x_2 + \cdots + x_k - 1)(x_1 + x_2 + \cdots + x_k)^2$ (1.44) . . (1.45) + $(x_1 + x_2 + \cdots + x_k - 1)(x_1 + x_2 + \cdots + x_k)^{n-1}$ (1.46)

2. Finite Differences

In this section let apply received in previous section results to show finite differences of power function $f(x) = x^n$, such that $(x, n) \in \mathbb{N}$. From (1.19) we know identity

$$
(2.1) f(x) = 1 + (x - 1)(x0 + x1 + x2 + \dots + xn-1) = 1 + (x - 1)Vn-1(x, k) = xn
$$

Then, its finite difference $\Delta f(x)$ suppose to be

(2.2)
$$
\Delta f(x) = f(x+1) - f(x) =
$$

(2.3)
$$
= [1 + \underline{x((x+1)^0 + (x+1)^1 + (x+1)^2 + \cdots + (x+1)^{n-1})}]
$$

(2.4)
$$
= [1 + \underbrace{(x-1)(x^0 + x^1 + x^2 + \dots + x^{n-1})}_{(x-1)V_{n-1}(x, k) = x^n - 1}]
$$

(2.5)
$$
= xV_{n-1}(x+1, k) - (x-1)V_{n-1}(x, k)
$$

$$
(2.6) \qquad = xV_{n-1}(x+1, k) - x^{n} - 1
$$

(2.7) $= xV_{n-1}(x+1, k) - xV_{n-1}(x, k) + V_{n-1}(x, k)$

$$
(2.8) \qquad = x[V_{n-1}(x+1, k) - V_{n-1}(x, k)] + V_{n-1}(x, k), \ k \notin \{0, n\}
$$

For example, let be $x = 3$, $n = 3$, then we have

Let show high order finite difference of power $f(x) = x^n$ by means of $V_{n-1}(x, k)$, that is

$$
(2.15)\ \Delta^m f(x) = \sum_{k=0}^{m-1} (x-k)[V_{n-1}(x+m-k, t \neq 0) - V_{n-1}(x+m-k+1, t \neq 0)]
$$

Derivative of $f(x) = x^n$ could be written regarding to

(2.16)
$$
\frac{df(x)}{dx} = \lim_{h \to 0} \left[\frac{xV_{n-1}(x+1, k) - (x-1)V_{n-1}(x, k)}{h} \right]
$$

3. Conclusion

In this paper particular pattern, that is sequence [A287326](https://oeis.org/A287326) in [OEIS,](https://oeis.org/) [\[4\]](#page-6-0), [\[3\]](#page-6-1), [\[2\]](#page-6-2)., which shows us necessary items to expand x^3 , $x \in \mathbb{N}$ was generalized and obtained results were applied to show expansion of $f(x) = x^n$, $(x, n) \in \mathbb{N}$. Additionally, relation between exponential and power functions with natural base and exponent was shown by means of expression [\(1.20\)](#page-3-2).

REFERENCES

- [1] Conway, J. H. and Guy, R. K. "Pascal's Triangle." In The Book of Numbers. New York: Springer-Verlag, pp. 68-70, 1996.
- [2] The OEIS Foundation Inc.,The On-Line Encyclopedia of Integer Sequences, 1964-present <https://oeis.org/>
- [3] Kolosov P. "Series Representation of Power Function", pp. 4-5, 2018. Availible online at [arXiv:1603.02468.](https://arxiv.org/abs/1603.02468)
- [4] Kolosov Petro, et al., "Triangle read by rows: $T(n,k) = 6*k*(n-k)+1$ " Entry [A287326](https://oeis.org/A287326) in [\[2\]](#page-6-2), 2017.
- [5] N. J. A. Sloane and Mira Bernstein et al., "Pascal's triangle." Entry [A007318](http://oeis.org/A007318) in [\[2\]](#page-6-2), 1994 present.

[6] N. J. A. Sloane. "The all 1's sequence." Entry [A000012](https://oeis.org/A000012) in [\[2\]](#page-6-2), 1994-present.