ON THE NUMERICAL EXPANSION OF MONOMIALS

KOLOSOV PETRO

ABSTRACT. In this short report particular pattern, that is sequence A287326 in OEIS, [4], [3], [2], which shows us necessary items to expand x^3 , $x \in \mathbb{N}$ will be generalized and obtained results will be applied to show expansion of power function $f(x) = x^n$, $(x, n) \in \mathbb{N}$. In Section 3 received results are used to obtain finite differences of power function f(x).

Keywords. Power function, Exponential function, Monomial 2010 Math. Subject Class. 30BXX ORCID: 0000-0002-6544-8880

Contents

1.	Introduction and Main Results	1
2.	Finite Differences	6
3.	Conclusion	7
References		

1. INTRODUCTION AND MAIN RESULTS

In recent work ([3], eq. 1.15) for each positive integer x was shown the identity

 $(1.1) x^3 = x + (x-0) \cdot 3! \cdot 0 + (x-1) \cdot 3! \cdot 1 + (x-2) \cdot 3! \cdot 2 + \cdots$

 $\cdots + (x - (x - 1)) \cdot 3! \cdot (x - 1)$

Particularizing expression (1.3) and applying compact sigma notation, one could have

(1.2)
$$x^{3} = \sum_{m=0}^{x-1} 3! \cdot mx - 3! \cdot m^{2} + 1, \qquad x \in \mathbb{N}$$

Lets build a triangle using $3!\cdot kn-3!\cdot k^2+1$ over k and n, where n - denotes the row, k - corresponding item of the row

Date: February 14, 2018.

kolosovp94@gmail.com.

Figure 1. Triangle generated by $3! \cdot kx - 3! \cdot k^2 + 1$, $0 \le k \le n = 4$, sequence A287326 in OEIS, [4], [3], [2].

The main property of above triangle is

Property 1.4. Summation of each n-th row of Triangle (1.2) from k = 0 to n - 1 returns us n^3 .

Reader could notice that Triangle (1.2) has similar distribution to Pascal's triangle [1], [5], hereby the follow questions is stated:

Question 1.5. Has the Triangle (1.2) any connection with Pascal's Triangle, and is it exist similar patterns in order to receive expansion of $x^j \ j > 3$?

To answer to the question (1.4), let rewrite and review our Triangle (1.2) again

Figure	2.	Triangle	(1.2)).
--------	----	----------	-------	----

Let take away from each item k, such that 0 < k < n of Triangle (1.5) the value of n^2 , then we have

Figure 3. Triangle generated by $\left\{ \begin{array}{l} 3! \cdot kn - 3! \cdot k^2 + 1 - n^2, \ 0 < k < n \\ 1, \ k \in \{0, \ n\} \end{array} \right.$

We can observe that summation of *n*-th row of Triangle (1.6) over k from 0 to n-1 returns us the n^2 . It's very easy to see that removing n^1 from each item k, such that 0 < k < n of Triangle (1.6) and summing up received *n*-th rows over k from 0 to n-1 will result n^1 , let show it

Figure 4. Triangle generated by $\left\{ \begin{array}{l} 3! \cdot kn - 3! \cdot k^2 + 1 - n^2 - n^1, \ 0 < k < n \\ 1, \ k \in \{0, \ n\} \end{array} \right.$

Review the Triangle (1.7), we can say that above statement holds. Reviewing our Triangles (1.2), (1.6), (1.7), let define generalized item $V_M(n, k)$

Definition 1.9.

(1.10)
$$V_M(n, k) := \begin{cases} n^0 + n^1 + \dots + n^M, \ 0 < k < n \\ 1, \ k \in \{0, n\} \end{cases}$$

Property 1.11. From definition (1.8) follows the equality between items $V_M(n, k)$ in range $k \in \{1, n-1\}$

(1.12)
$$\forall k \in \{1, n-1\}: V_M(n, k) = V_M(n, k+1 \le n-1)$$

= $V_M(n, k+2 \le n-1)$
...
= $V_M(n, k+j \le n-1), j \in \mathbb{N}$

Note that k-th items of Triangles (1.2), (1.6), (1.7), such that 0 < k < n are $V_0(n, k)$, $V_1(n, k)$, $V_2(n, k)$, respectively. Reviewing our triangles Triangles (1.2), (1.6), (1.7), we could observe the identity

(1.13)
$$n^{M} = \sum_{k=0}^{n-1} V_{M-1}(n, k), \qquad M \in \{1, 2, 3\}$$

Example 1.14. Review (1.13), let be n = 4, M = 3, then

(1.15)
$$4^{3} = V_{2}(4, 0) + V_{2}(4, 1) + V_{2}(4, 2) + V_{2}(4, 3)$$

$$= 1 + \underbrace{1+4+4^2}_{V_2(4, 1)} + \underbrace{1+4+4^2}_{V_2(4, 2)} + \underbrace{1+4+4^2}_{V_2(4, 3)}$$
$$= 1 + 3(4^0 + 4^1 + 4^2) = 1 + 21 + 21 + 21$$

Let be Theorem

Theorem 1.16. Each power function $f(x) = x^n$ such that $(x, n) \in \mathbb{N}$ could be expanded next way

(1.17)
$$x^{n} = \sum_{k=0}^{x-1} V_{n-1}(x, k), \quad \forall (x, n) \in \mathbb{N}$$

Proof. Recall Triangle, consisting of items $V_0(x, k)$, that is analog of (1.7)

Figure 5. Triangle generated by $V_0(x, k)$, sequence A000012 in OEIS, [6], [2].

Obviously, summation over rows of triangle (1.16) from 0 to x - 1 gives us the x^1 . Let show a second power by means of $V_0(x, k)$, we have accordingly

(1.19)
$$x^{2} = 1 + \underbrace{(V_{0}(x, 1) + x)}_{V_{1}(x, 1)} + \underbrace{(V_{0}(x, 2) + x)}_{V_{1}(x, 2)} + \dots + \underbrace{(V_{0}(x, x - 1) + x)}_{V_{1}(x, x - 1)}$$

For example, consider the sum of 3-rd row of triangle A000012, then we receive 3^1 , then by power property

$$x^n = \sum_{k=0}^{x-1} x^{n-1}$$

we have to add twice by 3^1 to receive 3^2 , ie

$$3^2 = 1 + (3+1) + (3+1)$$

Generalizing above result, we have identity

$$\sum_{k=0}^{x-1} V_{n-1}(x, k) = \\ = 1 + \underbrace{(x^0 + x^1 + \dots + x^{n-1}) + \dots + (x^0 + x^1 + \dots + x^{n-1})}_{x-1 \text{ times}} \\ (1.20) = 1 + (x-1)(x^0 + x^1 + x^2 + \dots + x^{n-1}) = 1 + (x-1)V_{n-1}(x, k) \\ = x + (x-1)x + (x-1)x^2 + (x-1)x^3 + \dots + (x-1)x^{n-1} \\ = 1 + x^n - x^0 = x^n, \ (x, n) \in \mathbb{N} \end{cases}$$

This completes the proof.

Also, (1.18) could be rewritten as

(1.21)
$$x^{n} = 1 + \underbrace{(x-1) + (x-1)x + \dots + (x-1)x^{n-1}}_{n \text{ times}}$$

(1.22)
$$= 1 + \sum_{k=0}^{n-1} (x-1)x^{k}, \ \forall (x, n) \in \mathbb{N}$$

Define the power function $f(x) = x^n$, such that $(x, n) \in \mathbb{N}$ and exponential function $g(x, k) = x^k$, $x \in \mathbb{N}$, then expression (1.20) shows us the relation between exponential and power functions with natural base and exponent

(1.23)
$$f(x) = 1 + \sum_{k=0}^{n-1} g(x, k+1) - g(x, k)$$

Reader could also notice the connection between Maclaurin expansion $\frac{1}{1-x} = x^0 + x^1 + x^2 + x^3 + \cdots$, -1 < x < 1 and (1.18), that is

(1.24)
$$\frac{x^n}{x-1} - \underbrace{\frac{1}{x-1}}_{-\frac{1}{1-x}} = x^0 + x^1 + x^2 + \dots + x^{n-1}, \ \forall (x, \ n) \in \mathbb{N}$$

Next, let review and apply our results on Binomial Related expansion of monomial $f(x) = x^n$, $(x, n) \in \mathbb{N}$, that is summation of finite difference of power with increment h = 1

(1.25)
$$x^{n} = \sum_{k=0}^{x-1} \Delta_{h}[x^{n}]$$
$$= \sum_{k=0}^{x-1} \underbrace{nk^{n-1} + \binom{n}{2}k^{n-2} + \dots + \binom{n}{n-1}k + 1}_{\Delta_{h}[x^{n}] = (x+h)^{n} - x^{n}}$$
$$= \sum_{j=0}^{x-1} \sum_{k=1}^{n} \binom{n}{k} j^{n-k}, \ x \in \mathbb{N}$$

Then, it follows for each $(x, m, n) \in \mathbb{N}$

(1.26)
$$x^{n+1} = \sum_{j=0}^{x-1} \sum_{k=1}^{n+1} \binom{n}{k} j^{n+1-k} = \sum_{j=0}^{x-1} \sum_{k=1}^{n} \binom{n}{k} j^{n-k} + x^n$$
$$x^{n+m} = \sum_{j=0}^{x-1} \sum_{k=1}^{n} \binom{n}{k} j^{n-k} + x^n + x^{n+1} + \dots + x^{n+m-1}, \ x \in \mathbb{N}$$

To show one more property of $V_M(n, k)$, let build Triangle given $V_2(n, k)$

Figure 6. Triangle generated by $V_2(n, k)$ over n from 0 to 9.

Reviewing above triangle, we could observe that summation of intermediate column gives us well known identity,

(1.27)
$$x^{2} = \sum_{k=0}^{|x|-1} 2k + 1, \ x \in \mathbb{Z}$$

Generalizing above expression, we receive

(1.28)
$$x^{n} = \sum_{k=0}^{n-1} V_{n-1}(2k, k), \ \forall (x, n) \in \mathbb{N}$$

More detailed,

(1.29)
$$V_n(2k, k) = \begin{cases} (2k)^0 + (2k)^1 + \dots + (2k)^n, \ 0 < k < n \\ 1, \ k \in \{0, n\} \end{cases}$$

Then

$$\sum_{k=0}^{n-1} V_{n-1}(2k, k) =$$

$$(1.30) = 1 + (1 + 2 + \dots + 2^{n-1}) + (1 + 2 \cdot 2^{1} + \dots + (2 \cdot 2)^{n-1})$$

$$(1.31) + (1 + 2 \cdot 3 \dots + (2 \cdot 3)^{n-1}) + \dots$$

$$(1.32) + (1 + 2 \cdot (n-1) \dots + (2 \cdot (n-1))^{n-1}) = x^{n}$$

Note that upper expression (1.26) is partial case of (1.24), when n + m = 2. Recall the Binomial $(x + y)^n$, by means of (1.19) we have expansion

(1.33)
$$(x+y)^n = 1 + (x+y-1)V_{n-1}(x+y, k)$$

Hereby, let be lemma

Lemma 1.34. Relation between binomial expansion and $V_{n-1}(x, k)$

$(1.35)(x+y)^n$	=	$\sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} = 1 + (x+y-1)V_{n-1}(x+y, k)$
(1.36)	=	$1 + (x + y - 1)(x + y)^{0} + (x + y - 1)(x + y)^{1} + \cdots$
(1.37)	+	$(x+y-1)(x+y)^{n-1}$
(1.38)	=	$1 + x((x+y)^{0} + (x+y)^{1} + (x+y)^{2} + \dots + (x+y)^{n-1})$
(1.39)	+	$y((x+y)^{0} + (x+y)^{1} + (x+y)^{2} + \dots + (x+y)^{n-1})$
(1.40)	—	$((x+y)^0 + (x+y)^1 + (x+y)^2 + \dots + (x+y)^{n-1})$

Multinomial case could be built as well as Binomial, hereby

 $\begin{array}{rcl} (1.4(k)_1 + x_2 + \dots + x_k) &= \\ (1.42) &= 1 + (x_1 + x_2 + \dots + x_k - 1)(x_1 + x_2 + \dots + x_k)^0 \\ (1.43) &+ (x_1 + x_2 + \dots + x_k - 1)(x_1 + x_2 + \dots + x_k)^1 \\ (1.44) &+ (x_1 + x_2 + \dots + x_k - 1)(x_1 + x_2 + \dots + x_k)^2 \\ (1.45) &\vdots \\ (1.46) &+ (x_1 + x_2 + \dots + x_k - 1)(x_1 + x_2 + \dots + x_k)^{n-1} \end{array}$

2. Finite Differences

In this section let apply received in previous section results to show finite differences of power function $f(x) = x^n$, such that $(x, n) \in \mathbb{N}$. From (1.19) we know identity

(2.1)
$$f(x) = 1 + (x-1)(x^0 + x^1 + x^2 + \dots + x^{n-1}) = 1 + (x-1)V_{n-1}(x, k) = x^n$$

6

Then, its finite difference $\Delta f(x)$ suppose to be

(2.2)
$$\Delta f(x) = f(x+1) - f(x) =$$

(2.3) $= [1 + x((x+1)^0 + (x+1)^1 + (x+1)^2 + \dots + (x+1)^{n-1})]$

(2.4)
$$- [1 + \underbrace{(x-1)(x^0 + x^1 + x^2 + \dots + x^{n-1})}_{xV_{n-1}(x+1, k)}]$$

(2.5)
$$= xV_{n-1}(x+1, k) - (x-1)V_{n-1}(x, k)$$

(2.6)
$$= xV_{n-1}(x+1, k) - x^n - 1$$

$$(2.6) \qquad = xV_{n-1}(x+1, k) - x^n -$$

 $= xV_{n-1}(x+1, k) - xV_{n-1}(x, k) + V_{n-1}(x, k)$ (2.7)

$$(2.8) \qquad = x[V_{n-1}(x+1, k) - V_{n-1}(x, k)] + V_{n-1}(x, k), \ k \notin \{0, n\}$$

For example, let be x = 3, n = 3, then we have

(2.9)	$\Delta f(3)$	=	f(4) - f(3)
(2.10)		=	$[1 + 3((3 + 1)^0 + (3 + 1)^1 + (3 + 1)^2)]$
(2.11)		—	$[1 + (3 - 1)(3^0 + 3^1 + 3^2)]$
(2.12)		=	$[3((3+1)^0 + (3+1)^1 + (3+1)^2)]$
(2.13)		—	$[(3-1)(3^0+3^1+3^2)]$
(2.14)		=	63 - 26 = 37

Let show high order finite difference of power $f(x) = x^n$ by means of $V_{n-1}(x, k)$, that is

(2.15)
$$\Delta^m f(x) = \sum_{k=0}^{m-1} (x-k) [V_{n-1}(x+m-k, t \neq 0) - V_{n-1}(x+m-k+1, t \neq 0)]$$

Derivative of $f(x) = x^n$ could be written regarding to

(2.16)
$$\frac{df(x)}{dx} = \lim_{h \to 0} \left[\frac{xV_{n-1}(x+1, k) - (x-1)V_{n-1}(x, k)}{h} \right]$$

3. Conclusion

In this paper particular pattern, that is sequence A287326 in OEIS, [4], [3], [2]., which shows us necessary items to expand $x^3, x \in \mathbb{N}$ was generalized and obtained results were applied to show expansion of $f(x) = x^n$, $(x, n) \in \mathbb{N}$. Additionally, relation between exponential and power functions with natural base and exponent was shown by means of expression (1.20).

References

- [1] Conway, J. H. and Guy, R. K. "Pascal's Triangle." In The Book of Numbers. New York: Springer-Verlag, pp. 68-70, 1996.
- [2] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 1964-present https://oeis.org/
- [3] Kolosov P. "Series Representation of Power Function", pp. 4-5, 2018. Available online at arXiv:1603.02468.
- [4] Kolosov Petro, et al., "Triangle read by rows: $T(n,k) = 6^{k}k^{(n-k)}+1$ " Entry A287326 in [2], 2017.
- [5] N. J. A. Sloane and Mira Bernstein et al., "Pascal's triangle." Entry A007318 in [2], 1994present.

[6] N. J. A. Sloane. "The all 1's sequence." Entry A000012 in [2], 1994-present.