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Abstract. In this manuscript we establish a relation between Binomial theorem and
discrete convolution of piecewise defined power function. We show that Binomial expansion
of s-powered sum (x + y)s, s ≥ 1, x + y ≥ 1 is equivalent to the sum of product of discrete
convolutions of power function and certain real coefficients within the finite interval of
positive integers. In addition, we generalise relation between Binomial theorem and discrete
convolution of piecewise defined power function to Multinomial case.
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1. Introduction

In this paper we reveal a relation between famous Binomial theorem [AS72] and discrete
convolution [BDM11] of piecewise defined power function 〈x〉n, where angle brackets denotes
the Macaulay convention, see (1.1) for 〈x〉n. The content of the manuscript reaches the main
aim of the work through the following milestones. Firstly, we perform a detailed discussion
on (2m + 1)-degree integer-valued polynomials Pm

b (n). We show all the implicit forms of
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the polynomials Pm
b (n) and discuss their main properties. Finally, for the first milestone,

we arrive to the identity between odd-powered Binomial (and Multinomial) expansions and
partial case of Pm

b (n). As next step, we establish a relation between the polynomials Pm
b (n)

and discrete convolution of the power function 〈x〉n. This relation is consequence of the
following claims:

• Pm
b (n) is in relation with the convolutional power sum Cr

n(b), see (1.1) for Cr
n(b).

• Discrete convolution of power function 〈x〉n is partial case of the power sum Cr
n(b).

• Polynomials Pm
b (n) are in relation with the discrete convolution of power function

〈x〉n.

Then, in the subsection (3.1) we particularise obtained results to show the relation between
Binomial (and Multinomial) theorem and the discrete convolution of piecewise defined power
function.

1.1. Definitions, Notations and Conventions. We now set the following notation, which
remains fixed for the remainder of this paper:

• Am,r is a real coefficient defined recursively

Am,r :=


(2r + 1)

(
2r
r

)
, if r = m

(2r + 1)
(
2r
r

)∑m
d=2r+1 Am,d

(
d

2r+1

) (−1)d−1

d−r B2d−2r, if 0 ≤ r < m

0, if r < 0 or r > m

where Bt are Bernoulli numbers [Wei]. We assume that B1 = 1
2
.

• Lm(n, k) is polynomial of degree 2m in n, k

Lm(n, k) :=
m∑
r=0

Am,rk
r(n− k)r

• Pm
b (n) is polynomial of degree 2m + 1 in b, n

Pm
b (n) :=

b−1∑
k=0

Lm(n, k)

• Cr
n(b) is a convolutional power sum

Cr
n(b) :=

b−1∑
k=0

kr(n− k)r

• Hm,t(b) is a real coefficient defined as

Hm,t(b) :=
m∑
j=t

(
j

t

)
Am,j

(−1)j

2j − t + 1

(
2j − t + 1

b

)
B2j−t+1−b

• Xm,t(j) is polynomial of degree 2m− t in b

Xm,t(j) := (−1)m
2m−t+1∑

k=1

Hm,t(k) · jk
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• Sp(n) is a common power sum

Sp(n) :=
n−1∑
k=0

kp

• We believe to [GKP94] that exponential function 0x should be defined for all x as

0x = 1

• [P (k)] is the Iverson’s convention [Ive62], where P (k) is logical sentence depending
on k

[P (k)] =

{
1, P (k) is true

0, otherwise

• 〈x− a〉n is powered Macaulay bracket, [Mac19]

〈x− a〉n :=

{
(x− a)n, x ≥ a

0, otherwise
a ∈ Z

• {x− a}n is powered Macaulay bracket

{x− a}n :=

{
(x− a)n, x > a

0, otherwise
a ∈ Z

During the manuscript, the variable a is reserved to be only the condition of Macaulay
functions. If the power function 〈x− a〉n or {x− a}n is written without parameter a
e.g 〈x + y − t〉n means that it is assumed a = 0.

2. Discussion on the Polynomials Pm
b (n)

We’d like to begin our discussion from defined above polynomial Pm
b (n). Polynomial Pm

b (n)
is 2m + 1 degree polynomial in b, n. Polynomial Pm

b (n) is defined as finite sum of 2m degree
polynomial Lm(n, k) over k from zero to b− 1. The 2m-degree polynomials Lm(n, k) are to
be in extended form as

Lm(n, k) = Am,mk
m(n− k)m + Am,m−1k

m−1(n− k)m−1 + · · ·+ Am,0,

where Am,r are real coefficients. The coefficients Am,r are nonzero only for integer r within
the interval r ∈ {m} ∪ [0, bm−1

2
c. For instance, let show an example of Am,r coefficients

m/r 0 1 2 3 4 5 6 7

0 1
1 1 6
2 1 0 30
3 1 -14 0 140
4 1 -120 0 0 630
5 1 -1386 660 0 0 2772
6 1 -21840 18018 0 0 0 12012
7 1 -450054 491400 -60060 0 0 0 51480

Table 1. Coefficients Am,r.
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For m ≥ 11 the Am,r could be a fractional number. Thus, the polynomial Lm(n, k) could
be written in the form

Lm(n, k) = Am,mk
m(n− k)m +

bm−1
2
c∑

r=0

Abm−1
2
c,rk

r(n− k)r

For example, a few of polynomials Lm(n, k) are

L0(n, k) = 1,

L1(n, k) = 6k(n− k) + 1 = −6k2 + 6kn + 1,

L2(n, k) = 30k2(n− k)2 + 1 = 30k4 − 60k3n + 30k2n2 + 1,

L3(n, k) = 140k3(n− k)3 − 14k(n− k) + 1

= −140k6 + 420k5n− 420k4n2 + 140k3n3 + 14k2 − 14kn + 1

Here we briefly discussed the polynomials Lm(n, k), which is required step to be essentially
familiarized with the Pm

b (n). For now let’s back to main discussion concerning Pm
b (n). The

polynomials Pm
b (n) implicitly involve the convolutional power sum Cr

n(b), the polynomial
Xm,t(b) the real coefficient Hm,t(b) and common power sum Sp(n). In extended form, the
polynomial Pm

b (n) is following

Pm
b (n) =

b−1∑
k=0

Lm(n, k) =
b−1∑
k=0

m∑
r=0

Am,rk
r(n− k)r =

m∑
r=0

Am,r

b−1∑
k=0

kr(n− k)r =
m∑
r=0

Am,rC
r
b(n)

=
m∑
r=0

Am,r

b−1∑
k=0

kr

r∑
j=0

(−1)j
(
r

j

)
nr−jkj =

m∑
r=0

r∑
j=0

(−1)jnr−j
(
r

j

)
Am,r

b−1∑
k=0

kr+j

=
m∑
r=0

r∑
j=0

nr−j
(
r

j

)
Am,r

(−1)j

r + j + 1

r+j∑
s=0

(
r + j + 1

s

)
Bs(b− 1)r+j−s+1

(2.1)

However, by the symmetry of Lm(n, k),

Lm(n, k) = Lm(n− k, k)

the Pm
b (n) could be written in the form

Pm
b (n) =

b∑
k=1

Lm(n, k) =
b∑

k=1

m∑
r=0

Am,rk
r(n− k)r =

b∑
k=1

m∑
r=0

Am,rk
r

r∑
t=0

(−1)r−tnt

(
r

t

)
kr−t

=
b∑

k=1

m∑
r=0

Am,rk
r

r∑
t=0

(−1)r−tnt

(
r

t

)
kr−t =

m∑
t=0

nt

b∑
k=1

m∑
r=t

(−1)r−t
(
r

t

)
Am,rk

2r−t

︸ ︷︷ ︸
(−1)m−tXm,t(b)

=
m∑
t=0

nt

m∑
r=t

(−1)r−t
(
r

t

)
Am,rS2r−t+1(b)

From this formula it may be not immediately clear why Xm,t(b) represent polynomials in
b. However, this can be seen if we change the summation order again and use Faulhaber’s
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formula to obtain:

Xm,t(b) = (−1)m
m∑
r=t

(
r

t

)
Am,r

(−1)r

2r − t + 1

2r−t∑
`=0

(
2r − t + 1

`

)
B`b

2r−t+1−`

Introducing k = 2r − t + 1− `, we further get the formula

Xm,t(b) = (−1)m
2m−t+1∑

k=1

bk
m∑
r=t

(
r

t

)
Am,r

(−1)r

2r − t + 1

(
2r − t + 1

k

)
B2r−t+1−k︸ ︷︷ ︸

Hm,t(k)

It gives us opportunity to review the Pm
b (n) from different prospective, for instance

Pm
b (n) =

m∑
t=0

(−1)m−tXm,t(b) · nt =
m∑
t=0

2m−t+1∑
`=1

(−1)2m−tHm,t(`) · b` · nt(2.2)

The last line of the expression (2.2) clearly states why Pm
b (n) are polynomials in n, b. Let’s

show a few examples of polynomials Pm
b (n)

P0
b(n) = +b,

P1
b(n) = −2b3 + 3b2n + 3b2 − 3bn,

P2
b(n) = +6b5 − 15b4n− 15b4 + 10b3n2 + 30b3n + 10b3 − 15b2n2 − 15b2n + 5bn2,

P3
b(n) = −20b7 + 70b6n + 70b6 − 84b5n2 − 210b5n− 70b5 + 35b4n3 + 210b4n2 + 175b4n

− 70b3n3 − 140b3n2 + 28b3 + 35b2n3 − 42b2n− 7b2 + 14bn2 + 7bn,

P4
b(n) = +70b9 − 315b8n− 315b8 + 540b7n2 + 1260b7n + 420b7 − 420b6n3 − 1890b6n2

− 1470b6n + 126b5n4 + 1260b5n3 + 1890b5n2 − 294b5 − 315b4n4 − 1050b4n3

+ 735b4n + 210b3n4 − 630b3n2 + 180b3 + 210b2n3 − 270b2n− 60b2 − 21bn4

+ 90bn2 + 60bn

We consider the polynomials Pm
b (n) because thanks to them we reveal the main aim of the

work and establish a connection between the Binomial theorem and the discrete convolution
of a power functions 〈x〉n, {x}n. In the next section we establish a relation between the
polynomials Pm

b (n) and a power function of odd exponent 2m + 1, m ≥ 0.

3. Relation between Pm
b (n) and power function of odd exponent

For instance, the odd powers n2m+1, (n,m) ∈ N are

n2m+1 = Pm
n (n) =

m∑
r=0

Am,rC
r
n(n) =

m∑
t=0

2m−t+1∑
`=1

(−1)2m−tHm,t(`) · n`+t

=
m∑
t=0

(−1)m−tXm,t(n) · nt

(3.1)

This relation could be also described in terms of limits as follows

lim
b→n

Pm
b (n) = n2m+1
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By the symmetry of Lm(n, k) the odd power n2m+1, m ≥ 0 can be expressed as

n2m+1 = [n is even]Lm(n, n/2) + 2

bn−1
2
c∑

k=0

Lm(n, k),

where [n is even] is Iverson’s bracket. Moreover, the Binomial expansion of (x + y)2m+1 can
be reached similarly

(x + y)2m+1 =
2m+1∑
r=0

(
2m + 1

r

)
x2m+1−ryr = Pm

x+y(x + y)

=
m∑
r=0

Am,rC
r
x+y(x + y)

=
m∑
r=0

2m−r+1∑
`=1

(−1)2m−rHm,r(`) · (x + y)`+r

=
m∑
r=0

(−1)m−rXm,r(x + y) · (x + y)r

(3.2)

It clearly follows that Multinomial expansion of odd-powered t-fold sum (x1+x2+· · ·+xt)
2m+1

can be reached by Pm
b (x1 + x2 + · · ·+ xt) as well

(x1 + x2 + · · ·+ xt)
2m+1 =

∑
k1+k2+···+kt=2m+1

(
2m + 1

k1, k2, . . . , kt

) t∏
s=1

xks
t

= Pm
x1+x2+···+xt

(x1 + x2 + · · ·+ xt)

=
m∑
r=0

Am,rC
r
x1+x2+···+xt

(x1 + x2 + · · ·+ xt)

=
m∑
r=0

2m−r+1∑
`=1

(−1)2m−rHm,r(`) · (x1 + x2 + · · ·+ xt)
`+r

=
m∑
r=0

(−1)m−rXm,r(x1 + x2 + · · ·+ xt) · (x1 + x2 + · · ·+ xt)
r

(3.3)

4. Relation between Pm
b (n) and power function of natural exponent

In the previous section we have established a connection between the polynomial Pm
b (n)

and a power function. As we can see, a particular case of the polynomial for b = n, which is
identical to a power function of an odd exponent cannot be adapted for the general case of a
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power function without some changes. To go over to the general case of a power function, we
consider the relationship between an even and an odd degree, namely

xeven = x · xodd

Thus, using the Iverson’s bracket, a generalized power function can be expressed in terms of
an odd power function as follows

xs = x[s is even] · x2·b s−1
2
c+1

Thus, it is easy to generalise the partial case of Pm
b (n) for b = n for all exponents s ≥ 1, s ∈ N

xs = x[s is even]Ph
x(x) = x[s is even]

h∑
k=0

Ah,kC
k
x(x)

= x[s is even]

h∑
k=0

2h−k+1∑
`=1

(−1)2h−kHh,k(`) · x`+k

= x[s is even]

h∑
k=0

(−1)h−kXh,k(x) · xk,

(4.1)

where h = b s−1
2
c. The binomial expansion of (x + y)s for every s ≥ 1, s ∈ N is

(x + y)s =
s∑

k=0

(
s

k

)
xs−kyk = (x + y)[s is even]Ph

x+y(x + y)

= (x + y)[s is even]

h∑
k=0

Ah,kC
k
x+y(x + y)

= (x + y)[s is even]

h∑
k=0

2h−k+1∑
`=1

(−1)2h−kHh,k(`) · (x + y)`+k

= (x + y)[s is even]

h∑
k=0

(−1)h−kXh,k(x + y) · (x + y)k,

(4.2)

where h = b s−1
2
c. Now we are able to generalise the expression (4.1) for multinomial case as

well. For the t-fold s-powered sum (x1 +x2 + · · ·+xt)
s, s ≥ 1 we have following Multinomial
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expansion

(x1 + x2 + · · ·+ xt)
s =

∑
k1+k2+···+kt=s

(
s

k1, k2, . . . , kt

) t∏
`=1

xk`
`

= (x1 + x2 + · · ·+ xt)
[s is even]Ph

x1+x2+···+xt
(x1 + x2 + · · ·+ xt)

= (x1 + x2 + · · ·+ xt)
[s is even]

h∑
k=0

Ah,kC
k
x1+x2+···+xt

(x1 + x2 + · · ·+ xt)

= (x1 + x2 + · · ·+ xt)
[s is even]

h∑
k=0

2h−k+1∑
`=1

(−1)2h−kHh,k(`) · (x1 + x2 + · · ·+ xt)
`+t

= (x1 + x2 + · · ·+ xt)
[s is even]

h∑
k=0

(−1)h−kXh,k(x1 + x2 + · · ·+ xt) · (x1 + x2 + · · ·+ xt)
k,

where h = b s−1
2
c.

5. Relations between the Pm
b (n) and discrete convolution of power

functions 〈x〉n, {x}n

Previously we have established a relation between the polynomials Pm
b (n) and Binomial

theorem. In this section a relation between Pm
b (n) and convolution of the power function

〈x〉n is established. To show that Pm
b (n) implicitly involves the discrete convolution of the

power function 〈x〉n let’s refresh what Pm
b (n) is

Pm
b (n) =

m∑
r=0

Am,rC
r
n(b)

Meanwhile, the term Cr
n(b) is the convolutional power sum of the form

Cr
n(b) =

b−1∑
k=0

kr(n− k)r

By definition, the discrete convolution of defined over set of integers Z function f is

(f ∗ f)[n] =
∞∑

k=−∞

f(k)f(n− k)

Now it could be noticed immediately that the discrete convolution 〈x〉n∗〈x〉n of power function
〈x〉n is partial case of Cr

n(x). For instance, the discrete convolution of power functions 〈x〉n is

〈x− a〉n ∗ 〈x− a〉n =
∑
k

〈k + a〉r〈x− a− k〉r =
∑
k

(k + a)r(x− a− k)r[k ≥ 0][x− k ≥ 0]

=
∑
k

(k + a)r(x− a− k)r[0 ≤ k ≤ x],
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where [0 ≤ k ≤ x] is Iverson bracket of k. In above equation we have applied a Knuth’s
recommendation [Knu92] concerning the sigma notation of sums. Thus, we have an identity
between the discrete convolution 〈x〉n ∗ 〈x〉n of piecewise defined power function 〈x〉n and
power sum Cr

n(x) for every x ≥ 1, x ∈ N
〈x− a〉n ∗ 〈x− a〉n = Cx

x+1(x− a)

For the case of discrete convolution of power function {n}r we have

{x− a}n ∗ {x− a}n =
∑
k

{k + a}r{x− a− k}r =
∑
k

(k + a)r(x− a− k)r[k > 0][x− k > 0]

=
∑
k

(k + a)r(x− a− k)r[0 < k < x]

Therefore, the polynomials Pm
b (n) are in relation with discrete convolutions 〈x〉n ∗ 〈x〉n,

{x}n ∗ {x}n. For each x ≥ 1, x ∈ N

Pm
x (x) = −1 +

m∑
r=0

Am,rC
r
x+1(x) = −1 +

m∑
r=0

Am,r〈x〉r ∗ 〈x〉r = x2m+1

Pm
x (x) = 1 +

m∑
r=0

Am,r

x−1∑
k=1

kr(x− k)r = 1 +
m∑
r=0

Am,r{x}r ∗ {x}r = x2m+1

(5.1)

Note that in above formula the parameter a of power functions of 〈x− a〉r, {x− a}r equals
to a = 0 and is not shown. By the identity x2m+1 − 1 =

∑m
r=0 Am,r{x}r ∗ {x}r, the following

property concerning the sum of Am,r, namely, the sum of the Am,r equals to
m∑
r=0

Am,r = 22m+1 − 1

Above identity holds since the convolution {2}r ∗ {2}r = 1 for each r. Furthermore, we
are able to find a relation between the Binomial theorem and discrete convolution of power
function 〈x〉n.

6. Relation between Binomial theorem and discrete convolutions of power
functions 〈x〉n, {x}n

As it is stated previously in (5.1), the polynomials Pm
b (n) are able to be expressed in terms

of discrete convolution 〈x〉n ∗〈x〉n of the piecewise defined power function 〈x〉n. In this section
we refer to the power functions 〈x〉n, {x}n and assume that parameter a to be equal a = 0.
By the equivalence between Binomial theorem and partial case of Pm

b (n), which is shown
in (4.2), the odd Binomial expansion could be expressed in terms of discrete convolution of
power function Pm

b (n) as well. For each m ≥ 0, a + b ≥ 1 holds

(x + y)2m+1 =
2m+1∑
r=0

(
2m + 1

r

)
x2m+1−ryr = −1 + Pm

x+y+1(x + y)

= −1 +
m∑
r=0

Am,rC
r
x+y+1(x + y) = −1 +

m∑
r=0

Am,r〈x + y〉r ∗ 〈x + y〉r
(6.1)
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Above expression could be expressed in terms of discrete convolution {x}n ∗ {x}n as well,

(x + y)2m+1 =
2m+1∑
r=0

(
2m + 1

r

)
x2m+1−ryr = 1 +

m∑
r=0

Am,r{x + y}r ∗ {x + y}r(6.2)

In case of variations of a in 〈x − a〉n and {x − a}n the following identity holds for each
x ≥ 2a, a = const

(x− 2a)2m+1 = −1 +
m∑
r=0

Am,r〈x− a〉r ∗ 〈x− a〉r

= 1 +
m∑
r=0

Am,r{x− a}r ∗ {x− a}r

Note that a is parameter of 〈x− a〉r, {x− a}r by definition (1.1). For the exponent s ∈ N we
have the following relation between Binomial theorem and discrete convolution of 〈x + y〉s.
For each s ≥ 1, x + y ≥ 1

(x + y)s =
s∑

k=0

(
s

k

)
xs−kyk = (x + y)[s is even]

(
−1 + Ph

x+y+1(x + y)
)

= (x + y)[s is even]

(
−1 +

h∑
r=0

Ah,rC
r
x+y+1(x + y)

)

= (x + y)[s is even]

(
−1 +

h∑
r=0

Ah,r〈x + y〉r ∗ 〈x + y〉r
)
,

(6.3)

where h = b s−1
2
c. In terms of convolution {x}n ∗ {x}n for s ≥ 1, x + y ≥ 2 we also have

the following relation

(x + y)s =
s∑

k=0

(
s

k

)
xs−kyk = (x + y)[s is even]

(
1 + Ph

x+y(x + y)
)

= (x + y)[s is even]

(
1 +

h∑
r=0

Ah,rC
r
x+y(x + y)

)

= (x + y)[s is even]

(
1 +

h∑
r=0

Ah,r{x + y}r ∗ {x + y}r
)
,

(6.4)

where h = b s−1
2
c.

6.1. Relations between Multinomial theorem and discrete convolutions of power
functions 〈x〉n, {x}n. In this subsection we’d like to generalise the equations (6.1), (6.2)
to Mulitnomial case. For the t-fold s-powered sum (x1 + x2 + · · · + xt)

s, s ∈ N, x1 +
x2 + · · ·+ xt ≥ 1 we have following equality involving Multinomial expansion and discrete
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convolution of power function 〈x〉n. For each s ≥ 1, x1 + x2 + · · ·+ xt ≥ 1 holds

(x1 + x2 + · · ·+ xt)
s =

∑
k1+k2+···+kt=s

(
s

k1, k2, . . . , kt

) t∏
`=1

xk`
`

= (x1 + x2 + · · ·+ xt)
[s is even]

(
−1 + Ph

x1+x2+···+xt
(x1 + x2 + · · ·+ xt)

)

= (x1 + x2 + · · ·+ xt)
[s is even]

(
−1 +

h∑
k=0

Ah,kC
k
x1+x2+···+xt+1(x1 + x2 + · · ·+ xt)

)

= (x1 + x2 + · · ·+ xt)
[s is even]

(
−1 +

h∑
k=0

Ah,k〈x1 + x2 + · · ·+ xt〉k ∗ 〈x1 + x2 + · · ·+ xt〉k
)
,

where h = b s−1
2
c. In terms of convolution {x}n ∗ {x}n for s ≥ 1, a + b ≥ 2 we also have the

following relation

(x1 + x2 + · · ·+ xt)
s =

∑
k1+k2+···+kt=s

(
s

k1, k2, . . . , kt

) t∏
`=1

xk`
`

= (x1 + x2 + · · ·+ xt)
[s is even]

(
1 +

h∑
k=0

Ah,k{x1 + x2 + · · ·+ xt}k ∗ {x1 + x2 + · · ·+ xt}k
)
,

where h = b s−1
2
c.

7. Power function as a product of certain matrices

8. Derivation of the coefficients Am,r

Assuming that for every integer m ≥ 0

n2m+1 = Pm
n (n) =

m∑
r=0

Am,rC
r
n(n)

The coefficients Am,r could be evaluated expanding Cr
n(n)

Cr
n(n) =

n−1∑
k=0

kr(n− k)r =
n−1∑
k=0

kr

r∑
j=0

(−1)j
(
r

j

)
nr−jkj =

r∑
j=0

(−1)j
(
r

j

)
nr−j

n−1∑
k=0

kr+j
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Using Faulhaber’s formula
∑n

k=1 k
p = 1

p+1

∑p
j=0

(
p+1
j

)
Bjn

p+1−j, we get

Cr
n(n) =

∑
j

(
r

j

)
nr−j (−1)j

r + j + 1

[∑
s

(
r + j + 1

s

)
Bsn

r+j+1−s −Br+j+1

]

=
∑
j,s

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)
Bsn

2r+1−s −
∑
j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

=
∑
s

∑
j

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)
︸ ︷︷ ︸

S(r)

Bsn
2r+1−s −

∑
j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

(8.1)

where Bs are Bernoulli numbers and B1 = 1
2
. Now, we notice that

S(r) =
∑
j

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)
=

{
1

(2r+1)(2r
r )
, if s = 0;

(−1)r
s

(
r

2r−s+1

)
, if s > 0.

In particular, the last sum is zero for 0 < s ≤ r. Therefore, expression (8.1) takes the form

Cr
n(n) =

1

(2r + 1)
(
2r
r

)n2r+1 +
∑
s≥1

(−1)r

s

(
r

2r − s + 1

)
Bsn

2r+1−s

︸ ︷︷ ︸
(?)

−
∑
j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

︸ ︷︷ ︸
(�)

Hence, introducing ` = 2r + 1− s to (?) and ` = r − j to (�), we get

Cr
n(n) =

1

(2r + 1)
(
2r
r

)n2r+1 +
∑
`

(−1)r

2r + 1− `

(
r

`

)
B2r+1−`n

`

−
∑
`

(
r

`

)
(−1)j−`

2r + 1− `
B2r+1−`n

`

=
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
odd `

(−1)r

2r + 1− `

(
r

`

)
B2r+1−`n

`

Using the definition of Am,r coefficients, we obtain the following identity for polynomials in n

(8.2)
∑
r

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑

r, odd `

Am,r
(−1)r

2r + 1− `

(
r

`

)
B2r+1−`n

` ≡ n2m+1

Taking the coefficient of n2m+1 in (8.2) we get Am,m = (2m+1)
(
2m
m

)
and taking the coefficient

of n2d+1 for an integer d in the range m/2 ≤ d < m, we get Am,d = 0. Taking the coefficient
of n2d+1 for d in the range m/4 ≤ d < m/2, we get

Am,d
1

(2d + 1)
(
2d
d

) + 2(2m + 1)

(
2m

m

)(
m

2d + 1

)
(−1)m

2m− 2d
B2m−2d = 0,



ON THE LINK BETWEEN BINOMIAL THEOREM AND DISCRETE CONVOLUTION OF POWER FUNCTION13

i.e,

Am,d = (−1)m−1
(2m + 1)!

d!d!m!(m− 2d− 1)!

1

m− d
B2m−2d.

Continue similarly, we can express Am,d for each integer d in range m/2s+1 ≤ d < m/2s

(iterating consecutively s = 1, 2...) via previously determined values of Am,j as follows

Am,d = (2d + 1)

(
2d

d

) ∑
j≥2d+1

Am,j

(
j

2d + 1

)
(−1)j−1

j − d
B2j−2d.

9. Verification of the results and examples

To fulfill our study we provide an opportunity to verify its results by means of Wolfram
Mathematica language. It is possible to verify the most important results of the manuscript us-
ing the Mathematica programs available at https://github.com/kolosovpetro/research unit tests.
Also, we’d like to show why an odd-power identity (3.1) holds by a few examples. We arrange
in tables the values of Lm(n, k) to show that Pm

n (n) = Lm(n, 0)+Lm(n, 1)+· · ·+Lm(n, n−1) =
n2m+1. For example, for m = 1 we have the following values of L1(n, k)

n/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 7 1
3 1 13 13 1
4 1 19 25 19 1
5 1 25 37 37 25 1
6 1 31 49 55 49 31 1
7 1 37 61 73 73 61 37 1

Table 2. Triangle generated by L1(n, k), 0 ≤ k ≤ n.

From table 1 it is seen that

P1
0(0) = 0 = 03

P1
1(1) = 1 = 13

P1
2(2) = 1 + 7 = 23

P1
3(3) = 1 + 13 + 13 = 33

P1
4(4) = 1 + 19 + 25 + 19 = 43

P1
5(5) = 1 + 25 + 37 + 37 + 25 = 53.

Another case, if m = 2, we have the following values of L2(n, k)

https://github.com/KolosovPetro/research_unit_tests
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n/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 31 1
3 1 121 121 1
4 1 271 481 271 1
5 1 481 1081 1081 481 1
6 1 751 1921 2431 1921 751 1
7 1 1081 3001 4321 4321 3001 1081 1

Table 3. Triangle generated by L2(n, k), 0 ≤ k ≤ n.

Again, an odd-power identity (3.1) holds

P2
0(0) = 0 = 05

P2
1(1) = 1 = 15

P2
2(2) = 1 + 31 = 25

P2
3(3) = 1 + 121 + 121 = 35

P2
4(4) = 1 + 271 + 481 + 271 = 45

P2
5(5) = 1 + 481 + 1081 + 1081 + 481 = 55.

Tables (1), (2) are entries A287326, A300656 in [Slo64].
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11. Conclusion

In this manuscript a relation between Binomial theorem and discrete convolution of
piecewise defined power function is established. It is shown that Binomial expansion of
s-powered sum (a+b)s, s ≥ 1 is equivalent to the sum of consequent convolutions of piecewise
defined power function multiplied by the certain real coefficients. In addition, the relation
between Binomial theorem and convolution of piecewise defined power function is generalised
to Multinomial case.
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