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1. INTRODUCTION

Your introduction here. Include some references [1, 2, 3]. Lorem Ipsum is simply dummy
text of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard
dummy text ever since the 1500s, when an unknown printer took a galley of type and

scrambled it to make a type specimen book. It has survived not only five centuries, but also
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the leap into electronic typesetting, remaining essentially unchanged. It was popularised in
the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more
recently with desktop publishing software like Aldus PageMaker including versions of Lorem
Ipsum.

Image example

« U unexpected-polynomial-identitie ical-interpolation v %9 MATH-125 v %' build |
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Figure 1. Image example (from caption).
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m/r |0 1 2 3 4 5 6 7
0 |1
1 1 6
2 |1 0 30
3 1 -14 0 140
4 |1 -120 0 0 630
5 |1 -1386 660 0 0 2772
6 |1 -21840 18018 0 0 0 12012
7 |1 -450054 491400 -60060 O 0 0 51480

Table 1. Coefficients A, . See OEIS sequences [4, 5].

3.,
I3,

And for any natural m we have polynomial identity
"= ZT(m, k) k) (1)
k=1

where z¥l denotes central factorial defined by

where (n), =n(n—1)(n—2)---(n—k+1) denotes falling factorial in Knuth’s notation. In

particular,
n—1
) _ n_ L T L >_ ( ﬁ_>
x —:E<a:+2 1)(934—2 1) <x+2 n—1 —:)skli[l x+2 k (2)

This is an equation reference (1).
Continuing similarly, we are able to derive the formula for multifold sums of powers, which

18
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Theorem 1.1 (Multifold sums of powers via Newton’s series). For non-negative inte-
gers r,n,m and an arbitrary integer t

- SN - » +t—1 n—t+r
Yn™ = At —1)itst (J . >ET_S n? + ( . )
S | (e (T

s=1

Proof. By Newton'’s series for power and repeated applications of the segmented hockey stick

identity. O

Proposition 1.2 (Falling factorial).

n—1

(), =ax(@—1)(z—2)(x=3)---(z—n+1)=[[(x— k)

k=0
Proposition 1.3.
(2), _ (=
n \n
1.1. Rising factorials.
Proposition 1.4 (Rising factorial).
n—1
2™ =gz +1)(z+2)(z+3) - (z+n—1)= H(x—l—k)
k=0

Proposition 1.5.

1.2. Central factorials.

Lemma 1.6 (Central factorial).

Proposition 1.7.
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1.3. Derivatives.

de _ fla+h)— f(x)

dy h

dr _ flx+h)— f(z)
dy3 h

CONCLUSIONS

Conclusions of your manuscript.
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