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1. Introduction

Your introduction here. Include some references [1, 2, 3]. Lorem Ipsum is simply dummy

text of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard

dummy text ever since the 1500s, when an unknown printer took a galley of type and

scrambled it to make a type specimen book. It has survived not only five centuries, but also
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the leap into electronic typesetting, remaining essentially unchanged. It was popularised in

the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more

recently with desktop publishing software like Aldus PageMaker including versions of Lorem

Ipsum.

Image example

Figure 1. Image example (from caption).
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m/r 0 1 2 3 4 5 6 7

0 1

1 1 6

2 1 0 30

3 1 -14 0 140

4 1 -120 0 0 630

5 1 -1386 660 0 0 2772

6 1 -21840 18018 0 0 0 12012

7 1 -450054 491400 -60060 0 0 0 51480

Table 1. Coefficients Am,r. See OEIS sequences [4, 5].
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And for any natural m we have polynomial identity

xm =
m∑
k=1

T (m, k)x[k] (1)

where x[k] denotes central factorial defined by

x[n] = x
(
x+

n

2
− 1
)
n−1

where (n)k = n(n− 1)(n− 2) · · · (n− k+1) denotes falling factorial in Knuth’s notation. In

particular,

x[n] = x
(
x+

n

2
− 1
)(

x+
n

2
− 1
)
· · ·
(
x+

n

2
− n− 1

)
= x

n−1∏
k=1

(
x+

n

2
− k
)

(2)

This is an equation reference (1).

Continuing similarly, we are able to derive the formula for multifold sums of powers, which

is
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Theorem 1.1 (Multifold sums of powers via Newton’s series). For non-negative inte-

gers r, n,m and an arbitrary integer t

Σr nm =
m∑
j=0

∆jtm

[(
r∑

s=1

(−1)j+s−1

(
j + t− 1

j + s

)
Σr−s n0

)
+

(
n− t+ r

j + r

)]

Proof. By Newton’s series for power and repeated applications of the segmented hockey stick

identity. □

Proposition 1.2 (Falling factorial).

(x)n = x(x− 1)(x− 2)(x− 3) · · · (x− n+ 1) =
n−1∏
k=0

(x− k)

Proposition 1.3.

(x)n
n!

=

(
x

n

)
1.1. Rising factorials.

Proposition 1.4 (Rising factorial).

x(n) = x(x+ 1)(x+ 2)(x+ 3) · · · (x+ n− 1) =
n−1∏
k=0

(x+ k)

Proposition 1.5.

x(n)

n!
=

(
x+ n− 1

n

)
1.2. Central factorials.

Lemma 1.6 (Central factorial).

n[k] = n

(
n+

k

2
− 1

)(
n+

k

2
− 2

)
· · ·
(
n− k

2
+ 1

)
= n

k−1∏
j=1

(
n+

k

2
− j

)
Proposition 1.7.

n[k] = n

(
n+

k

2
− 1

)
k−1
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1.3. Derivatives.

dx

dy
=

f(x+ h)− f(x)

h

d3x

dy3
=

f(x+ h)− f(x)

h

Conclusions
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