2.2.7 End-to-end encryption

Historically, the process of encryption is considered to be symmetric one [Bellare et al.,
1997]. It means that prior the communication, the parties conclude on the common secret
key to be used in an encryption and decryption. This process is similar to the sharing
keys first, then sharing the locked chest with the message. Such approach is highly cost
since it requires to share the defined keys between each party taking place in secured
communication. Much more simpler is to think about secured communication channel in

terms of asymmetric encryption [Simmons, 1979]. The real life example would be
Alice shares with all the actors an opened lock, but keeps the key with herself.

So that Bob receives an opened lock, writes letter to Alice, puts letter to the chest, locks
the chest with received from Alice lock. This way only Alice would be able to open the
chest and to read the letter. This is an idea of the asymmetric encryption. However, such a
simple communication concept sometimes requires complex number theory approach. A
concept of opened lock may be interpreted in terms of one-way functions [Rompel, 1990].
One way function is the function that is easy to compute on every input, but hard to invert
given the image of a random input. Thus, it is much simpler to close the lock without key,
but very difficult to open lock combining various keys.

End-to-end encryption [Schillinger and Schindelhauer, 2019] is an asymmetric encryp-
tion such that the only communicating parties are able to decrypt the data. It means that
even system administrators are not able to decrypt the messages transmitted between par-
ties via their communication channel. End-to-end encryption can be reached via numerous

approaches. Generally, there are two ways to implement E2E encryption

*» Sharing public key to be used in encryption of the secret message, then encryption
is done by the public key’s owner, so-called asymmetric encryption. Public key

owner is able then to decrypt secret message. For example, RSA algorithm.

* Asymmetric key exchange where parties exchanging the keys first, then symmetri-
cally encrypting and decrypting the transferred data. For instance, Diffie-Hellman

key exchange and AES256 encryption using common secret.

The most important aspect here is to securely store the secrets on the user’s client appli-
cation. Looking to the Telegram example, we can conclude that it does not make sense
to implement end-to-end encryption for web and desktop clients [Job, Naresh, and Chan-
drasekaran, 2015; SuSanka and Kokes, 2017; Lee et al., 2017], due to the storage security

issues. Telegram uses the huge and heavy MTProto 2.0 cryptographic protocol based on

27

Diffie—Hellman key exchange and further AES256 symmetric encryption. According to
the project concerns, the E2E encryption via Diffie-Hellman key exchange and AES256
to be considered and implemented, the next section is about.

Diffie—Hellman key exchange. Diffie-Hellman (DH) protocol is a method of asym-
metric exchange of the cryptographic keys for a group of two or more participants, devel-
oped in 1976 by cryptographers Ralph Merkle, Whitfield Diffie and Martin Hellman. In
contrast to symmetric key exchange, the Diffie—Hellman protocol eliminates the direct
transfer of the shared secret between the participants, each participant computes a shared
secret with his own private-public key pair. The Diffie—Hellman protocol is based on a

one-way function of the form

A =G"mod P (2.1)

where A is the user’s public key, a is the user’s private key, P = 2Q + 1 is modulus,
such that 2048 bits safe-prime because Q is also prime, G is generator such that G
is primitive root modulo P. We say that G is primitive root modulo P if for each
1<a<P-—1the A= G mod P is unique and belong to the set {1,2,...,P —1}.
The period of such cyclic group Zp is P — 1 then.

Thus, the safety of the Diffie—Hellman protocol is based on the discrete logarithm
problem, which is unsolvable in polynomial time if the constants G and P are chosen
correctly. Graphically, the flow of the Diffie-Hellman protocol can be expressed through

the analogy with mixing paints, as below picture shows

28

Common Paint

Secret Colors

Exchange

Alice Paint Bob Paint

Secret Colors

=
=
=
=
-

Common Secret

a0 & 0@-00

Ficure 2.7: Diffie—Hellman key exchange concept diagram.

In contrast to the Diffie—Hellman based on discrete logarithm problem, there is an
Elliptic Curve Diffie—Hellman key exchange, which based on the elliptic curve discrete
logarithm problem. Although, the idea is quite same, the difference only in that Elliptic
Curve Diffie—Hellman ensures the same safety as discrete logarithm Diffie—Hellman
with lower value of the prime modulus P. For instance, 521 bit modulus used in Elliptic
Curve Diffie—Hellman is equally safe as 2048 bit modulus in discrete logarithm Diffie—

Hellman. To summarize, the flow of Diffie—Hellman key exchange is as follows

1. Given 2048 bits prime modulus P and generator G, such that G is primitive root

modulo P.
2. Alice chooses her secret a.
3. Alice sends to Bob her public key A = G” mod P.

4. Bob chooses his secret b.

29

5. Bob sends to Alice his public key B = G” mod P.
6. Alice computes common secret s = B* mod P.
7. Bob computes common secret s = A” mod P.

8. Alice and Bob have arrived to the same value

A’ mod P = G” mod P (2.2)
B” mod P = G" mod P (2.3)

Diffie—Hellman key exchange implementation via REST. Although, the idea of
Diffie—Hellman key exchange looks quite simple, some remarks on the concrete imple-
mentation should be added. Firstly, it is necessary to implement the mechanism of key
exchange request between two or more parties. As it discussed above, each user has his
own private-public keys pair, so in order to perform request between parties, it should be
implemented dedicate REST [Ong et al., 2015] web—service endpoint, for instance the
POST: api/key-exchange-requests which takes the request body of the form

{
"requestedUserId": "3fa85f64-5717-4562-b3fc-2c963f66afab",

"publicKey": "RUNLMSAAAAC21kqYcTGhutQPxcjvoqUELKoy®"

So, request sender generates on the client side a key pair, keeps private on in the file
system and shares the public in request to receiver. Therefore, the second party has received
the key exchange request. In order to display all the key exchange requests awaiting the
confirmation of decline decisions, it is worth to implement another REST endpoint such
that GET: api/key-exchange-requests, so that requested party will have the list of

requests to proceed. This endpoint may return the data structure like follows

{
"keyExchangeRequests": [
{
"requestId": "81d314c1-913f-4686-827e-ef2a65ccc370",
"senderId": "3fa85f64-5717-4562-b3fc-2c963f66afab",
"senderPublicKey": "RUNLMSAAAAC21kqYcTGhutQPxcjvoqUELKoy®"
}

30

"message": "SUCCESS",

"success'": true

Finally, requested party should be able to confirm or decline the key exchange re-
quest, the DELETE: api/key-exchange-requests endpoint should be implemented
then. The server is able to fetch the request thanks to the body endpoint takes

{
"requestId": "3fa85f64-5717-4562-b3fc-2c963f66afa6",
"confirmed": true,
"publicKey": "string"

b

Therefore, an identifier of awaiting request is passed to the server among with boolean
value indicating the confirmation. Under the roof of this operation are also generation of
private-public keys pair for the requested party and generation of common secret stored
in client’s file system. As result, the initial request sender receives a public key as
confirmation from requested party. Requested side may get all his public keys via the

REST web-service using the resource GET: api/public-keys

{
"publicKeys": [
{
"partnerId": "ae9el®a4-0c7e-4911-8450-4139d4all4a7",
"partnerPublicKey": "RUNLMSAAAAAbc49wfaZ+QF9J2culS66bkp®”
}
1,
"message': "SUCCESS",
"success": true
3

Now requested participant is able to derive the common secret. In order to provide
an example, a simple command line interface is implemented. We have used an Elliptic
Curve Diffie—Hellman implementation ECDiffieHellmanCng Class from the names-
pace System.Security.Cryptography of the .NET base class library. The P-256
curve is used.

More precisely, the following CLI commands are implemented
e MangoAPI.DiffieHellmanConsole login SENDER_EMAIL SENDER_PASSWORD

31

* MangoAPI.DiffieHellmanConsole key-exchange RECEIVER_ID

e MangoAPI.DiffieHellmanConsole key-exchange-requests

* MangoAPI.DiffieHellmanConsole confirm-key-exchange REQUEST_ID
* MangoAPI.DiffieHellmanConsole print-public-keys

e MangoAPI.DiffieHellmanConsole create-common-secret RECEIVER_ID

Commands are self-explanatory, therefore we skip the detailed documentation on them.

An example of console output straightforward

PS C:\Users\pkolosov> MangoAPI.DiffieHellmanConsole login $env:SENDER_EMAIL $env:SENDER_PASSWORD
Attempting to login ...

liriting tokens to file ...

Login operation success.

PS C:\Users\pkolosov> MangoAPI.DiffieHellmanConsole key-exchange $env:RECEIVER_ID

Key exchange request with an ID 5810fb94-e3ce-4d2a-af33-95366a7c2b30 created successfully.
Wiriting private key to file...

Wiriting public key to file ...

Key exchange request sent successfully.

PS C:\Users\pkolosov> MangoAPI.DiffieHellmanConsole login $env:RECEIVER_EMAIL $env:RECEIVER_PASSWORD
Attempting to login ...

Wiriting tokens to file ...

Login operation success.

PS C:\Users\pkolosov> MangoAPI.DiffieHellmanConsole key-exchange-requests

RequestId: 5810fb%4-e3ce-4d2a-af33-95366a7c2b30

SenderId: fd3cé7c5-c6ff-4a5d-ales-98ecelb7?752b

Sender Public Key: RUNLMSAAAADBFEUGJcwSeMlwDi4Jf4s6IAbCvPSwOTiYB/G/iKB3IhbSgSNeGOPUje2NBdip534psQbKfé6up7IfMEzwxiVy

PS C:\Users\pkolosov> MangoAPI.DiffieHellmanConsole confirm-key-exchange 5810fbh94-e3ce-4d2a-af33-95366a7c2b30
iriting private key to file...

Writing public key to file ...

Writing common secret to file...

Key exchange request confirmed successfully.

PS C:\Users\pkolosaov> MangoAPI.DiffieHellmanConsole print-public-keys
PartnerId: fd3cé7c5-c6ff-4abd-aléé-98ecelb7752b
Public Key: RUNLMSAAAADBFEUGJcwSeMlwDi4Jf4s6IAbCvPSwOTiYB/G/iKB3IhbSgSNeGOPUje2NBdjp534psQbKfeGup7IfM5zwxiVy

PS C:\Users\pkolosov> MangoAPI.DiffieHellmanConsole login $env:SENDER_EMAIL $env:SENDER_PASSWORD
Attempting to log -

Writing tokens to file ...

Login operation success.

PS C:\Users\pkolosov> MangoAPI.DiffieHellmanConsole create-common-secret $env:RECEIVER_ID
Wiriting common secret to file...
Common secret generated successfully.

Ficure 2.8: Diffie—Hellman key exchange console output.

Finally, both test accounts reached the same common secret.

32

