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0.1 Second partial sums of m-th powers

We consider the sums of powers of successive integers:
n
ET=1"4+2"4+ L+ n"
k=1
which, as we know, are calculated with the Faulhaber polynomials, as follows:
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Each of these formulas generates, as n varies, an increasing numerical se-
quence, of the type of that obtained for m = 2:

1,5,14,30, 55,91, 140, 204, 285, ...
that is the sequence of the square pyramidal numbers) .

We aim to find a way to calculate, given any of these sequences, the sum
of its first n terms, that is, the second partial sums of the m-th powers.

An opportunity to obtain this is offered by the following table:

" " 1" " " 1" " " " "
2" 2" 2" 2" 2" 2" 2" 2" 2" 2"
3" 3" 3" 3" 3" 3" 3" 3" 3" 3"
4" 4" 4" 4" 4" 4" 4" 4" 4" 4"
5" 5" 5" 5" 5" 5" 5" 5" 5" 5"
6" 6" 6" 6" 6" 6" 6" 6" 6" 6"
7" 7" 7" 7" 7" 7" 7" 7" 7" 7"
@-D"@-D" | @-D)" | @-D" | @-D)" | n-D)" | (n-1)" | (n-1)" (n-1)" | (n-1)"
n" n" n" n" n" n" n" n" n" n"

By summing the content of each column (green+yellow boxes), we obtain
the sum of the first n m-th powers, that (in tribute to Faulhaber) we denote

by F(m) .

F(m) = Z k"™
k=1


http://mathworld.wolfram.com/FaulhabersFormula.html
http://en.wikipedia.org/wiki/Square_pyramidal_number

and the contents of the entire table will be then:
n
(n+ 1) Fpy = (n+1) Y k™
k=1

The green section contains, in each row, the amount: K™ x K = K™+t By
summing the contents of all rows of this section, one obtains the sum of the
first n (m+1)-th powers:

i1y = k; gy

The yellow section contains, in the columns, the sequence of F{,,) sums. By
summing the contents of all columns of this section, one obtains the second
partial sums of the m-th powers.

The quantity that we seek is then obtained by subtracting to the content
of the entire table, the content of the green boxes, that is:

kz Fimy = (n+ 1) Fm) — Fnr (1)
=1

As we shall see later, this formula will enable us to conduct a research ,
limitless and in every direction, to find polynomial expressions generating in-
teger sequences of sums of powers of every order and grade.

By performing algebraic calculations for m = 3, you get:

Y Fiy=(n+1)Fg — Fuy = (n+ 1)[(n* +n)/2]* — (6n° + 150"+

k=1

10n® —n)/30 = (3n® + 15n* + 2513 + 1512 + 2n) /60

Polynomials obtained for m from 1 to 8 are listed in the following table:

Second partial sums of m -th powers

(n°+3n%+2n)/6

m*+4n’ + 507 + 2n)/12

(Bn’ + 151 +25n° + 1507+ 2n)/60

2n®+12n° + 250" +20n° + 317 - 21)/60

2n” +14n°+35n° +35n* + Tn° - Tn* - 2n)/84
Gn®+24n" +70n° + 84n° + 21n" - 281> - 10n* + 4n)/168

(5n’ +45n° + 15007 +210n° + 63n° - 1057 - 50n° + 302 + 121 )/360
2n""+20n° + 750 + 120n” + 42n° - 84n° - 50n* + 401> + 2107 - 61)/180
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Polynomial expressions generated by (1) are the natural extension of those
listed at the beginning. The general formula for obtaining them in a direct
way is written, in the compact notation of Faulhaber formula, in the following
way:

ZFm :(n+1)Fm _Ern+l)
k=1

_n+l; m+1 P P (m+2 m+2—k
)W GAD TR T ) (T

where the By quantities are the Bernoulli numbers .

This formula calculates, for each natural number n, the second partial sums
of the m-th powers.


http://mathworld.wolfram.com/BernoulliNumber.html

0.2 Partial sums of m-th powers with
Faulhaber polynomials

In previous section we saw how to use Faulhaber polynomials F{,,) to obtain
formulas of second partial sums of m-th powers.

We will seek now an iterative process for deriving, starting from the formula
(1) of previous section, the polynomial expressions that calculate the partial
sums later.

Whereas each partial sum represents, by definition, the sum of the first ¢
terms of the previous sum, we have, in general:

q
Pim) = 22 Pi-am)

Then, the polynomial expression of the j-th partial sum of the m-th power is
obtained by adding (from 1 to ¢) all terms of the polynomial of the previous
partial sum. In the practice is better to use non factored polynomials, ranked
according to n powers: to each power of n will correspond the F{;,) polynomial.

We will perform the derivation of the polynomial P; on the first power:

P2(1) = (n3 + 3n2 + 277,)/6

q

q
Pyy =Y Pyay= > (n®+3n*+2n)/6
n=1

n=1

= (F3) +3F2) +2F1)) /6 =n(1+n)(2+n)(3+n)/24

The knowledge E] of the general formula (1) enables then, using Faulhaber
polynomials, the direct derivation of the m-th power formulas.

With Mathematica , using mainly Factor and Table commands and a bit
of copy and paste, you get faster:

Third partial sums of m-th powers: P3y,

n*(1 + n)*(2 + n)*(3 + n)/24

n*(1 + n)*(2 + n)*(3 + n)*(3 + 2*n)/120

n*(1 +n)*(2 + n)*(3 + n)*(1 + 3*n + n"2)/120

n*(1 + n)*(2 + n)*(3 + n)*(3 + 2*n)*(-1 + 6*n +2* n"2)/840

n*(1 + n)*(2 + n)*(3 + n)*(-1 + 2*n + n"2)*(2 + 4*n + n"2)/336

n*(1 + n)*(2 + n)*(3 + n)*(3 + 2*n)*(2 - 30*n + 35*n"2 + 30*n"3 + 5*n"4)/5040

n*(1 + n)*(2 + n)*(3 + n)*(6 - 6*n - 20*n"2 + 15*n"3 + 25*n"4 + 9*n"5 + n"6)/720

n*(1 + n)*2 + n)*(3 + n)*(3 + 2*n)*(1 + 36*n - 69*n"2 + 45*n*4 + 18*n"5 + 2*n"6)/3960

w|w|afu|r|w |~ ]|B

! Tgnoring the (1) we would not have Py(1y that enabled us to derive Py(q).
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http://www.wolfram.com/mathematica/

Fourth partial sums of m-th powers: Py,

—

n*(1 +n)*(2 + n)*(3 + n)*(4 + n)/120

n*(1 + n)*(2 + n)"2*(3 + n)*(4 + n)/360

n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(2 + 4*n + n"2)/840

n#(1 +n)*(2 + MA2%(3 + n)*(4 + n)*(-1 + 12%n + 3¥n*2)/5040

n#(1 + n)*(2 + n)*(3 + n)*(4 + n)*(-24 + 20*n + 85n"2 + 40%n"3 + 5%n"4)/15120

n*(1 +n)*(2 + n)"2*(3 + n)*(4 + n)*(-1 - 8*n + 14*n"2 + 8*n"3 + n"4)/5040

n*(1 + n)*2 + n)*(3 + n)*(4 + n)*(48 - 100*n - 89*n"2 + 160*n"3 + 140*n"4 + 36*n"5 + 3*n”6)/23760

[o.<3 BN I e N (L, T I S (LOS I I (S

n*(1 + n)*(2 + n)"2*(3 + n)*(4 + n)*(1 + 4*n + n"2)*(21 - 48*n + 20*n"2 + 16*n"3 + 2*n"4)/23760

Fifth partial sums of m-th powers: Psy,

n*(1 + n)*2 + n)*(3 + n)*4 + n)*(5 + n)/720

n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(5 + 2*n)/5040

n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(10 + 15%*n + 3*n"2)/20160

0 2%(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)"2*(5 + 2*n)/30240

n#(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(-2 + 5%n + n*2)#(9 + 10%n + 2*n"2)/60480

n*(1 + n)*2 + n)*(3 + n)*@4 + n)*(S + n)*(S + 2*n)*(-3 + 5*n + n*2)*(4 + 15%n + 3*n"2)/332640

N|lo(u|lr|lw|o|[~|B

n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(-3 + 5*n + n*2)*(-2 + 5*n + n2)*(5 + 5*n + n”2)/95040

. etc. etc.




0.3 Pascal’s triangle and recurrence relations
for partial sums of m-th powers

We build with Excel the table that calculates, for successive additions (left
cell+top cell) the partial sums of powers of positive integers:

n n" 1" sums | 2" sums | 3™ sums
1

2

3 d

4 b e

5 a c

6

7

We want to obtain the recurrence relation for second sums, that is a formula
for calculating the n-th term in the column "2th sums" as a function of the
previous terms.

The formula that we seek is obtained by analyzing the data in the table as
follows:

c=a+Db

e=b+d
f=c+e=a+b+e=a+e-d+e
f=2-d+a

Indicating with a(, ) the n-th term of the sequence, we therefore have:
2th sums: a@m) = 2a(m—1,m) — An-2,m) + 1"

Extending the previous scheme to the successive columns, one obtains:
3th sums: a,m) = 3a(m—1,m) — 3G(n-2,m) + An-3,m) +n"
4th sums: a@m)y = 4a(n—1,m) — 6a(n—2,m) + 40(n—3,m) — A(n—a,m) + 1™

From this point forward we continue (successfully) using [Pascal’s triangle , by
alternating signs, with the following results:

5th sums: a(,m)y = da(n-1,m) — 10a(n—2,m) + 10a(n—3,m) — DA(n—1,m)
+a(n—5,m) +n™
and so on ...


https://en.wikipedia.org/wiki/Pascal's_triangle

So, if we denote by p the order number of the partial sums, its recurrence
relation is obtained by the following general formula:

p-l el P ”
a(n,m)z Z(_l) (k+1ja(n—l—k,m) +n

k=0

This was a "non linear" recurrence relation between the sequence terms.
There are also "linear" recurrence relations, obtainable from Pascal’s triangle,
having the following general formula:

p+m-1 o [ Prm
a(n’m) = Z (_1) ( ja(n—l—k,m)

=0 k+1
Example: for the "fourth partial sums of sixth powers" you get the linear

relationship:

Q(n) = 10a(n_1) — 45a(n_2) + 120a(n_3) — 210a(n_4) + 252a(n_5) — 21Oa(n_6)
+120a(n_7) - 45a(n_g) + 10a(n_9) — Q(n—10)

The coefficient lists of such expressions are shown in |OEIS with the term
"signature”.


https://oeis.org/

0.4 Horizontal sequences

We insert in Excel sequences of "Third partial sums of m-th powers", arranging
them in a table as follows:

Second partial sums of m-th powers

n m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7

1 1 1 1 1 1 1 1 1
2 3 4 6 10 18 34 66 130
3 6 10 20 46 116 310 860 2446
4 10 20 50 146 470 1610 5750 21146
5 15 35 105 371 1449 6035 26265 117971
6 21 56 196 812 3724 18236 93436 494732
7 28 84 336 1596 8400 47244 278256 1695036
8 36 120 540 2892 17172 109020 725220 4992492
9 45 165 825 4917 32505] 229845 1703625 13072917
10 55 220 1210 7942 57838 450670 3682030 31153342
11 66 286 1716 12298 97812 832546 7431996 68720938
12 78 364 2366 18382]  158522] 1463254 14167946 142120342

Consider the recurrence relation for 2th sums seen above:

Un,m) = 20(n—1,m) = G(n—2,m) + 1"

We will use this relationship to derive formulas of sequences that appear in
each row of the table.

The opportunity to do this lies in the fact that the above relationship is
valid, for all n, in every column of the table , and then for each term of the
considered horizontal sequence. You get formulas by replacing subsequently,
in the general recurrence relation, polynomials that gradually you get, starting
from n = 2. This is an inductive process that applies to any order of partial
sums of m-th powers.

We perform here derivations of formulas until the @ ;) sequence.

n=2: a@m) =2 x1—0+2m =[2" 4 2]

N=3: Q(am) = 20(2m) — A + 3™ = 2(2" +2) — 1+ 3™ = [2mF1 4 3m 4 3|

n=4: a(am) = 2a@3m) — Azm) +4™ = 22" + 3™ 4+ 3) — (2™ + 2) + 4™
—[3x2m 4 22m 4 2 x 3™ 4 4

n=5: A5 m) = ‘2m+2 + 22m+1 + 3m+1 + 5™ 4 5‘

n=6: a(my = |5 x 2" +3 x 4™ +4 x 3™ +2 x 5™ + 6™ + 6

This process works indefinitely, generating polynomial expressions longer
and longer, which in turn generate sequences with terms that magnify more
and more rapidly. I personally found sequences up to the fifth partial sums,
visible in the OEIS Encyclopedia to the above link.
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0.5 The differences of m-th powers

The first differences of the m-th powers are computed, by definition, in the

following way:

Dl(m) =n" — (n — 1)m

(2)

Using the program "Mathematica" you get from the (2) the following com-

plete polynomials:

First differences of m -th powers: Dy, = n" - (n - 1)"

1

-1+2n

| OFF. 1 |

1-3n+3n"2

1+4n-6n"2+4n"3

1-5n+10n"2-10n"3 +5n"4

-1+6n-15n"2+200n"3-15n"4 + 6 n"5

1-7n+21n"2-35n"3+35n"4-21n"5+7n"6

-1+8n-28n"2+56n"3-70n"4 +56n"5 - 28 n"6 + 8 n"7

Olo|[x|a|un|s|w|o|—=]| S

1-9n+36n"2-84n"3+ 126 n" - 126 n"5 + 84 n*6 - 36 n"7 + 9 n"\8

You will get the subsequent differences by replacing n with (n — 1) in the
corresponding polynomials having degree >1 of the preceding tables:

11

m Second differences of m -th powers: D,

1

22 | OFF. 2 |
316(-1+n)

412(7-12n+60n"2)

5(10(-3+7n-6n"2+2n"3)

612 (31-90n+ 105 n*2 - 60 n*3 + 15 n™4)

7114 (-1+n)(9-22n+23n"2-120n"3 +3 n"4)

812 (127 - 504 n + 868 n"2 - 840 n”3 + 490 n"4 - 168 n"5 + 28 n"\6)

916 (-1 +1n) (85-296 n + 460 n”2 - 408 n"3 + 222 n™4 - 72 n5 + 12 n"6)

m Third differences of m -th powers: D,

1

2 | OFF.3 |
316

4112 (-3+2n)

5130(5-6n+2n"2)

6160 (-3+2n)(3-3n+n"2)

7142 (43-90n+ 7502 - 30 n"3 + 5 n"4)

8184 (-3+2n)(23-42n+320n"2-120n"3 +2n"4)

916 (3025 - 8694 n + 10836 n2 - 7560 n3 + 3150 n"4 - 756 n”5 + 84 n"6)



m Fourth differences of m -th powers: Dy,

1

2 | OFF.4 |
3

4 (24

51120 (-2 + n)

61120 (13- 12n+ 3 n"2)

71840 (-2 +n) (5-4n+n"2)

8 [168 (243 - 400 n + 260 n2 - 80 n3 + 10 n"\4)

91504 (-2 + n) (185-272 n + 164 n”2 - 48 n3 + 6 n"4)

and we could continue indefinitely .

The so obtained polynomials, properly factored, provides formulas to cal-
culate, at various orders, the differences of m-th powers.

Note that, from each table, you get sequences whose offset is equal to the
differences order number.

12


https://oeis.org/eishelp2.html

0.6 Conclusion

In January 2015, I discovered that many of sequences obtained by the above
procedures were not yet in the OEIS Encyclopedia database. This, in some
way, gave me confirmation of newness of the introduced derivation procedures.
I then immediately worked, contributing to the database OEIS with 53 new
integer sequences, all approved and published in about two months. You can
consult them here .
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https://oeis.org/search?q=Author%3A+Luciano+Ancora&sort=&language=&go=Search
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