
SECURE OPENID CONNECT IMPLEMENTATION USING AZURE
ACTIVE DIRECTORY AND ASP .NET CORE

PETRO KOLOSOV AND DMITRIJ KUDRYASHOV

Abstract. In this manuscript, we discuss the problem of secure storage and transfer of

access tokens between microservices. Web browsers may store access tokens both in local

storage and in cookie files. We propose a secure implementation to store and transfer au-

thentication cookies between microservices using Azure Active Directory, OpenID Connect,

and ASP .NET Core.

Contents

1. Definitions 1

2. Statement of the problem 2

3. Introduction to OpenID Connect 4

4. Authentication flow 7

5. Refresh token flow 10

6. Conclusions 11

References 12

1. Definitions

• Access Token is a credential used to access protected resources. An access token

is an opaque string representing an authorization issued to the client. The string is

usually opaque to the client. Tokens represent specific scopes and durations of access,

Date: July 25, 2023.

Key words and phrases. OpenID Connect, OIDC, Azure Active Directory, PKCE, OAuth 2.0, XSS,

CSRF, ASP .NET Core .

1

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 2

granted by the resource owner, and enforced by the resource server and authorization

server.

• Refresh Token is a credential used to obtain a new pair of access and refresh

tokens when they become invalid or expired, or to obtain additional access tokens

with identical or narrower scope. Access tokens may have a shorter lifetime and fewer

permissions than authorized by the resource owner. Refresh tokens are issued to the

client by the authorization server.

• Resource Owner is an entity capable of granting access to a protected resource.

When the resource owner is a person, it is referred to as an end-user.

• Resource Server is the server hosting the protected resources, capable of accepting

and responding to protected resource requests using access tokens.

• Client is an application making protected resource requests on behalf of the resource

owner and with its authorization. This term does not imply any particular implemen-

tation characteristics (e.g., whether the application executes on a server, a desktop,

or other devices).

• Authorization Server is the server issuing access tokens to the client after success-

fully authenticating the resource owner and obtaining authorization.

2. Statement of the problem

In this manuscript, we discuss the problem of secure storage and transfer of access tokens

between microservices. Web browser may store access tokens both, in local storage or in

cookie files. Local storage is a web browser mechanism that allows web applications to store

data locally on the user’s device. It is important to note that Local storage is vulnerable to

Cross-Site Scripting attacks [1]. Cross-Site Scripting is a type of attack such that malicious

JavaScript code is injected into an html-page to access user’s sensitive data, for example,

access tokens. Cross-Site Scripting (XSS) attacks may be divided by following groups:

• Reflected XSS is a type of attack in which a malicious script is passed to the web

server via URL or form parameters and then returned back to the page’s html code

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 3

without proper filtering or escaping. If the user opens the page, then the script is

executed in the browser, which can lead to the loss of sensitive data, such as access

tokens.

• Stored XSS is a type of attack in which a malicious script is stored on the server,

for example, in the database and displayed on web pages. The script is executed in

users’ browsers, requesting pages with malicious code.

• XSS in the DOM is a type of attack such that a malicious script modifies the DOM

tree of a web page, running in the user’s browser. In most cases, based on modifying

the URL string.

Another way to store credentials is to store them in cookie files. Cookies are small pieces of

data sent by web server and stored on a user’s device. Storing access tokens in cookies elimi-

nates potential XSS attacks since that HttpOnly setting makes it impossible to read cookies

using JavaScript code. Having credentials stored in cookies, HTTP request is performed via

JavaScript. If the object { withCredentials: true } provided and auth cookies exist,

then auth cookies are attached to request, but cannot be accessed from JS code anyway.

Example of such request in TypeScript

return this.httpClient.post<TokensResponse>(

this.baseUrl + this.sessionsRoute,

command,

{ withCredentials: true });

Note that cookie files are vulnerable to Cross-Site Request Forgery attacks [2]. Cross-Site

Request Forgery is an attack such that redirects user to the resource where user has an active

session. It means that attacker could perform requests to resources on behalf of the user.

The main idea of Cross-Site Request Forgery (CSRF) attack is illustrated below

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 4

resource.com

(Active session)

cats.com

(Vulnerable)

resource.com

(Active session)

GET: cats.com

DELETE:
resource.com/

api/1 
+ Auth coockies

Figure 1. CSRF attack principle diagram.

Cookie files provided with SameSite setting that determines whether cookies will be sent

along with cross-domain requests.

SameSite setting has one of the states below:

• None means no restrictions are imposed on the transfer of cookies.

• Lax allows cookie transmission only by secure HTTP methods, according to RFC

7231 [3]. These methods are GET, HEAD, OPTIONS and TRACE.

• Strict blocks cookies from being sent with any requests from third-party resources.

Cookies will only be transferred within the same domain.

Therefore, SameSite setting values such as Lax and Strict protect user from a CSRF

attack blocking submission of cookies using unsecure HTTP methods and cross-domain re-

quests. There are more CSRF protection techniques in [4].

3. Introduction to OpenID Connect

OpenID Connect (OIDC) is a simple identity layer [5, 6] on top of the OAuth 2.0 proto-

col [7]. It enables Clients to verify the identity of the End-User based on the authentication

performed by an Authorization Server, as well as to obtain basic profile information about

the End-User in an interoperable and REST-like manner.

OAuth 2.0 is a protocol that enables a third-party application to obtain limited access to an

HTTP service, either on behalf of a resource owner by orchestrating an approval interaction

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 5

between the resource owner and the HTTP service, or by allowing the third-party application

to obtain access on its own behalf.

OAuth 2.0 provides various standardized message flows based on JSON and HTTP;

OpenID Connect uses them to provide identity services.

The problem OAuth 2.0 solves is that in the traditional client-server authentication model,

the client requests an access-restricted resource on the server by authenticating with the

server using the resource owner’s credentials. In order to provide third-party applications

access to restricted resources, the resource owner shares its credentials with the third party.

This creates several problems and limitations [7]:

• Third-party applications are required to store the resource owner’s credentials for

future use, typically a password in clear-text.

• Servers are required to support password authentication, despite the security weak-

nesses inherent in passwords.

• Third-party applications gain overly broad access to the resource owner’s protected

resources, leaving resource owners without any ability to restrict duration or access

to a limited subset of resources.

• Resource owners cannot revoke access to an individual third party without revoking

access to all third parties, and must do so by changing the third party’s password.

• Compromise of any third-party application results in compromise of the end-user’s

password and all the data protected by that password.

OAuth 2.0 addresses these issues by introducing an authorization layer and separating the

role of the client from that of the resource owner. In OAuth, the client requests access to

resources controlled by the resource owner and hosted by the resource server. Instead of

using the resource owner’s credentials to access protected resources, the client obtains an

access token. OAuth 2.0 with the Proof of Key Code Exchange [8] flow is displayed on the

diagram below

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 6

Redirect to Google authorization

server
 redirect UR
 client I
 scop
 stat

code_challenge (PKCE
code_challenge_method (PKCE)=S256

code_challenge=base_64_url_encode((abcd8Adkdkdae33..))sha256

code_verifier (43-128 characters)

abcd8Adkdkdae33..

Redirect to redirect_url only if

redirect_url has been registered

before with

query parameters

 stat
 cod

Authorization code interception

may happen here

Google

Google Drive

Google
Drive
API

User
Google
Drive
Account

Google Calendar

Google
Calendar API

Authorization server

diagrams://oauth/google? =...& =...code state

Logging in...

POST to authorization server
to get access token
 client_i
 cod
 redirect_ur
 grant_typ
 code_verifier (PKCE)

Returns access token and

refresh token if requested

Sign in with Google

Figure 2. OAuth 2.0 with PKCE flow diagram.

(1) After clicking on the Sign in with Google button, the browser is redirected to the

authorization endpoint, where the resource owner (user) enters credentials e.g., login

and password.

(2) After successful authentication, the browser is redirect to redirect uri defined in

OAuth provider settings. The code parameter is attached to the request parameters.

(3) Having the code value application exchanges it to a pair of access and refresh tokens.

If we used PKCE with specified code challenge and code challenge method values

exchanging code to a pair of tokens, we must pass the value of code verifier to the

request.

We mention here such definitions as code and state, and they mean

• Code is an authorization code that is obtained through an authorization server

and mediates between clients and resource owners. Before the authorization server

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 7

redirects the resource owner back to the client, the authorization server verifies the

authenticity of the resource owner. So because the resource owner only authenticates

with the authorization server, their credentials are never sent to the client.

• State is the value used by the client to store the state between the authorization

request and the callback. The authorization server enables this value when redirecting

the user agent back to the client. This parameter is used to prevent CSRF attacks.

Adding the Proof of Key Code Exchange (PKCE) to the OIDC flow improves proto-

col security so that the code cannot be exchanged by third-party applications by-passing

the original application. Authorization code flow with PKCE is a protocol that represents

a client-generated secret that can be verified by an authorization server. This secret is

called code verifier. The client hashes the code verifier value and writes it to the

code challenge parameter of an HTTP request. PKCE solves the problem of secure code

exchange. If an attacker manages to get an authorization code, then he will not be able to

exchange it for access and refresh tokens. Therefore, we ensure that the exchange of a code

for tokens is produced by the same application that performed the authentication. Proof of

Key Code Exchange can be compared to the digital signature of an authentication process.

To exchange the code for a pair of access and refresh tokens, it is necessary to specify a valid

code verifier.

4. Authentication flow

Consider a more practical approach that takes all the previously discussed aspects. Ap-

plying modern frameworks like ASP .NET Core, Angular, etc. let be the following authen-

tication flow as per the diagram below

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 8

 R
edi

rec
t v

ia
cal

lba
ck

rou
te 

and
 se

t a
uth

 co
oki

e t
o

 do
mai

n

htt

ps:
//

loc
alh

ost
:42

00

 Redirect

 If A
PI met

hod Is
Auth r

eturns
 false

 then

redire
ct to

https:
//loca

lhost:
4200/l

ogin

 IsAuth API method returns
true or false

 Front-end validates cookie
sending request to 

https://localhost:4200/api/
isAuth

 Backend redirects request
via and sets access

token from cookies to bearer
header of the request

YARP

Compiled Angular app and ASP .NET Core API under same domain https://localhost:4200

https://localhost:4200/api

https://localhost:4200/app
(static files)

YARP

https://localhost:4200/api/{prefix1}/{prefix2}

 Frontend request

API 1

https://localhost:7001

API 2

https://localhost:7002

API 3

https://localhost:7003

login.microsoftonline.com/tenant_ID/oauth2/v2.0/authorize

HTTP request
with Bearer

token

Figure 3. Authentication flow diagram.

Therefore, the whole authentication process can be described as eight steps such that

(1) Compiled Angular frontend application sends a request to the authentication end-

point of the ASP .NET Core API to verify the current authentication state. Angular

application is a set of precompiled bundles that are exposed via same ASP .NET

Core API at the /app endpoint so that cross-origin requests are not necessary and

tokens can be stored in cookie files securely

(2) Authentication endpoint of the ASP .NET Core API responses either with HTTP

status code 200 (OK) or 401 (Unauthorized)

(3) If 401 (Unauthorized) status code received from the previous step, then browser

is redirected to the login endpoint of the ASP .NET Core API, otherwise user gets

access to the protected resources

(4) Login method of the ASP .NET Core API redirects browser to the Azure AD autho-

rize url login.microsoftonline.com/tenant/oauth2/v2.0/authorize where user

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 9

enters his credentials. It is important to clarify that in order to get ID token, we

have to put parameter openid to the scope

serviceCollection

.AddAuthentication(options => {...})

.AddCookie(CookieAuthenticationDefaults.AuthScheme,

options => {...})

.AddOpenIdConnect(AuthConstants.AppOidc, options =>

{

...

options.Scope.Add("openid");

});

(5) After successful authentication on the Azure AD side; the browser is redirected

to the fallback url that is defined in Azure AD application registration. This

fallback url is an active endpoint of the ASP .NET Core API. At this point, the

TickerStore [9, 10] comes into the flow to manage user sessions. Each session is

stored as a UserSessionEntity entity in the database.

public class UserSessionEntity

{

public Guid Id { get; set; }

public DateTimeOffset CreatedAt { get; set; }

public DateTimeOffset ExpiresAt { get; set; }

public DateTimeOffset UpdatedAt { get; set; }

public DateTimeOffset DateOfLastAccess { get; set; }

public byte[] Value { get; set; }

}

The Value property of type byte[] contains a serialized AuthenticationTicket [11]

object such that contains all required information like access, ID and refresh tokens.

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 10

The class TickerStore implements ITickerStore interface that offers 4 methods:

StoreAsync, RenewAsync, RetrieveAsync, RemoveAsync.

• The StoreAsync method is executed immediately after authentication on the

authentication server, it saves the user session to the database.

• The RenewAsync method in our case is used by the background service to update

user sessions.

• The RetrieveAsync method is executed every time a request is sent to the

endpoint marked with the [Authorize] attribute.

• The RemoveAsync method is executed when the browser cookie has expired,

as well as is used by the same RefreshBackgroundService to remove sessions

which have not been used for a long time.

Example TicketStore implementation can be found at [10]. Example of TicketStore

dependency injection can be found at [12]. Authentication cookies are being setup

at this step.

(6) Step 1 is repeated here, but now the HTTP request is for sure to be with 200 (OK)

status code.

(7) Precompiled Angular frontend application now sends a request to another microser-

vice with authentication cookies attached to the request’s Bearer header using YARP

library [13], so that microservice is accessible. The YARP is configured according

to [14, 15].

(8) If a previous step returns 401 (Unauthorized) status code, then Step 1 is repeated

5. Refresh token flow

The implementation of refreshing user tokens is extremely simple. It is necessary to create

a background service [16] that manages sessions, in particular deletes sessions that have not

been used long time, refresh existing sessions, etc. In case of refresh or initial authentication,

the new AuthenticationTicket object [11] replaces the existing or new instance is created.

In addition, the Azure AD authentication server’s response contains a timestamp property

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 11

ExpiresIn that determines the lifetime of the tokens, the background service updates the

ExpiresAt property of the UserSessionEntity accordingly.

The background service is responsible not only for refreshing the sessions, but also it

is responsible for deleting the sessions that have not been used for a long time. Once

per predefined period, the sessions are selected and their DateOfLastAccess property is

compared to the current DateTime.Now. If the difference between the DateOfLastAccess

and DateTime.Now is more than, for example, 3 days, then the session is deleted. Each

time a user performs an action on the site, the DateOfLastAccess property is updated.

Implementation of a background service can be done as per references [17, 18]

6. Conclusions

In this manuscript, we explore the problem of secure storage and transfer of access to-

kens between microservices. Particular attention was paid to possible vulnerabilities during

transfer of access tokens such as Cross-Site Scripting and Cross-Site Request Forgery.

To eliminate these vulnerabilities, it is necessary to store authorization tokens in cookies

with mandatory HttpOnly and SameSite settings such that SameSite values should be

Lax or Strict. Therefore, cookies are either transmitted via secure HTTP methods or not

transmitted at all.

Authentication to be implemented using the OIDC protocol [5, 6] and Authorization code

flow with PKCE [8]. The main principle of the OIDC protocol is described more detailed in

Chapter 2.

Also, we provide an authentication / authorization implementation based on the ASP.NET

Core Web API backend and Angular frontend application. These applications are stored

under the single domain to eliminate the necessity to transfer authorization cookies cross

domain way. Transfer of access tokens between microservices is implemented using Reverse

Proxy YARP [13] so that the access token is automatically substituted in the request header.

In addition, we proposed a mechanism to refresh an access token through the TicketStore [9]

entity and HostedService class [16]. Therefore, the TicketStore checks each request for

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 12

access token expiration. In case of expiration of the access token, the access token is re-

freshed by means of authorization microservice. The TicketStore also stores pairs of the

access and refresh token inside AuthenticationTicket entity [11].

Finally, in this manuscript we proposed a solution to the problem of securely storing an

access token and passing it between microservices, eliminating the Cross-Site Scripting (XSS)

and Cross-Site Request Forgery (CSRF) vulnerabilities.

References

[1] Kevin Spett. Cross-site scripting. SPI Labs, 1(1):20, 2005.

[2] Mohd Shadab Siddiqui and Deepanker Verma. Cross site request forgery: A common web application

weakness. In 2011 IEEE 3rd International Conference on Communication Software and Networks, pages

538–543. IEEE, 2011.

[3] Roy Fielding and Julian Reschke. RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): semantics and

content. https://www.rfc-editor.org/rfc/rfc7231, 2014.

[4] OWASP Cheat Sheet Series. Cross-Site Request Forgery Prevention Cheat Sheet. https:

//cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_

Sheet.html, 2023.

[5] Prabath Siriwardena and Prabath Siriwardena. OpenID Connect (OIDC). https://link.springer.

com/chapter/10.1007/978-1-4842-2050-4_6, 2020.

[6] Nat Sakimura, John Bradley, Mike Jones, and E Jay. OpenID connect dynamic client registration 1.0.

https://openid.net/specs/openid-connect-registration-1_0-final.html, 2014.

[7] Dick Hardt. The OAuth 2.0 authorization framework. https://www.rfc-editor.org/rfc/rfc6749,

2012.

[8] J Bradley and N Agarwal. RFC 7636: Proof Key for Code Exchange by OAuth Public Clients. https:

//www.rfc-editor.org/rfc/rfc7636, 2015.

[9] Microsoft. ITicketStore Interface. https://learn.microsoft.com/en-us/dotnet/api/microsoft.

aspnetcore.authentication.cookies.iticketstore?view=aspnetcore-7.0, 2023.

[10] Dmitrij Kudryashov. Ticket store implementation. https://gist.github.com/Ketteiteki/

7eff8e3bb35d8d2877bd74404dcef129, 2023.

[11] Microsoft. AuthenticationTicket Class. https://learn.microsoft.com/en-us/dotnet/api/

microsoft.aspnetcore.authentication.authenticationticket?view=aspnetcore-7.0, 2023.

https://www.rfc-editor.org/rfc/rfc7231
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://link.springer.com/chapter/10.1007/978-1-4842-2050-4_6
https://link.springer.com/chapter/10.1007/978-1-4842-2050-4_6
https://openid.net/specs/openid-connect-registration-1_0-final.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.iticketstore?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.cookies.iticketstore?view=aspnetcore-7.0
https://gist.github.com/Ketteiteki/7eff8e3bb35d8d2877bd74404dcef129
https://gist.github.com/Ketteiteki/7eff8e3bb35d8d2877bd74404dcef129
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationticket?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.authenticationticket?view=aspnetcore-7.0

SECURE OIDC IMPLEMENTATION USING AZURE AD AND ASP .NET CORE 13

[12] Dmitrij Kudryashov. Ticket store dependency injection. https://gist.github.com/Ketteiteki/

3046261b345955f6e3d4e164774bfed1, 2023.

[13] Microsoft. YARP: Yet Another Reverse Proxy. https://microsoft.github.io/reverse-proxy, 2021.

[14] Dmitrij Kudryashov. YARP dependency injection. https://gist.github.com/Ketteiteki/

d1077303ef1c11d70b286f08cfd44824, 2023.

[15] Dmitrij Kudryashov. YARP section app settings. https://gist.github.com/Ketteiteki/

45d76a8409b3bb2fd9030fc8f117ca38, 2023.

[16] Microsoft. Background tasks with hosted services in ASP.NET Core. https://learn.microsoft.

com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-7.0&tabs=

visual-studio, 2023.

[17] Dmitrij Kudryashov. Background service implementation. https://gist.github.com/Ketteiteki/

560afca832c6143a4b847c907439c44c, 2023.

[18] Dmitrij Kudryashov. Background service configuration. https://gist.github.com/Ketteiteki/

735d2a3f0bb5e54cbe41895df74b8504, 2023.

Version: 0.2.6-tags-v0-2-5.70+tags/v0.2.5.196c143

Email address: kolosovp94@gmail.com

URL: https://kolosovpetro.github.io

Email address: kudryashov.kd@gmail.com

https://gist.github.com/Ketteiteki/3046261b345955f6e3d4e164774bfed1
https://gist.github.com/Ketteiteki/3046261b345955f6e3d4e164774bfed1
https://microsoft.github.io/reverse-proxy
https://gist.github.com/Ketteiteki/d1077303ef1c11d70b286f08cfd44824
https://gist.github.com/Ketteiteki/d1077303ef1c11d70b286f08cfd44824
https://gist.github.com/Ketteiteki/45d76a8409b3bb2fd9030fc8f117ca38
https://gist.github.com/Ketteiteki/45d76a8409b3bb2fd9030fc8f117ca38
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-7.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-7.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-7.0&tabs=visual-studio
https://gist.github.com/Ketteiteki/560afca832c6143a4b847c907439c44c
https://gist.github.com/Ketteiteki/560afca832c6143a4b847c907439c44c
https://gist.github.com/Ketteiteki/735d2a3f0bb5e54cbe41895df74b8504
https://gist.github.com/Ketteiteki/735d2a3f0bb5e54cbe41895df74b8504

	1. Definitions
	2. Statement of the problem
	3. Introduction to OpenID Connect
	4. Authentication flow
	5. Refresh token flow
	6. Conclusions
	References

