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Abstract. In this manuscript we review and prove the following conjecture for row sums

of iterated rascal triangles. For every i

4i+3∑
k=0

(
4i+ 3

k

)
i

= 24i+2

where
(
n
k

)
i
is an iterated rascal number.

Contents

1. Introduction 1

2. Row sums conjecture 3

3. Acknowledgements 4

References 4

1. Introduction

Rascal triangle is Pascal-like numeric triangle developed in 2010 by three middle school

students, Alif Anggoro, Eddy Liu, and Angus Tulloch [1]. During math classes they were
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challenged to provide the next row for the following number triangle

1

1 1

1 2 1

1 3 3 1

. . .

Teacher’s expected answer was the one that matches Pascal’s triangle, e.g “1 4 6 4 1”.

However, Anggoro, Liu, and Tulloch suggested “1 4 5 4 1” instead. They devised this new

row via what they called diamond formula

South =
East ·West+ 1

North

So they obtained the following triangle

n/k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 5 4 1

5 1 5 7 7 5 1

6 1 6 9 10 9 6 1

7 1 7 11 13 13 11 7 1

Table 1. Rascal triangle.

Indeed, the forth row is “1 4 5 4 1” because 4 = 1·3+1
1

and 5 = 3·3+1
2

. Since then, a lot of

work has been done over the topic of rascal triangles. In this article we stick our attention

to the one of rascal triangles generalizations, namely iterated rascal triangles [2]. Iterated

rascal number is defined via a sum of binomial coefficients multiplication
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Definition 1.1. Iterated rascal number(
n

k

)
i

=
i∑

m=0

(
n− k

m

)(
k

m

)
(1.1)

Thus, the rascal triangle (1) is the triangle generated by
(
n
k

)
1
.

2. Row sums conjecture

As we see iterated rascal triangles are indeed of Pascal-like triangles family. If rascal

triangles are of Pascal-like triangles family, then similar properties must hold. I believe that

is how the authors of [2] were thinking proposing the row sums conjecture for iterated rascal

triangles.

Conjecture 2.1. (Conjecture 7.5 in [2].) For every i

4i+3∑
k=0

(
4i+ 3

k

)
i

= 24i+2

where
(
n
k

)
i
is an iterated rascal number.

Proof. Rewrite conjecture statement explicitly as

4i+3∑
k=0

i∑
m=0

(
4i+ 3− k

m

)(
k

m

)
= 24i+2

Rearranging sums and omitting summation bounds yields

i∑
m=0

∑
k

(
4i+ 3− k

m

)(
k

m

)
= 24i+2 (2.1)

In Concrete mathematics [[3], p. 169, eq (5.26)], Knuth et al. provide the identity for the

column sum of binomial coefficients multiplication

l∑
k=0

(
l − k

m

)(
q + k

n

)
=

(
l + q + 1

m+ n+ 1

)
(2.2)

We can observe this pattern in the equation (2.1), thus the sum
∑

k

(
4i+3−k

m

)(
k
m

)
equals to∑

k

(
4i+ 3− k

m

)(
k

m

)
=

(
4i+ 4

2m+ 1

)
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Therefore, conjecture (2.1) is equivalent to

i∑
m=0

(
4i+ 4

2m+ 1

)
= 24i+2

Note that

2i+1∑
m=0

(
4i+ 4

2m+ 1

)
= 24i+3

So that

1

2

2i+1∑
m=0

(
4i+ 4

2m+ 1

)
=

i∑
m=0

(
4i+ 4

2m+ 1

)
= 24i+2

This completes the proof. □

Therefore, the row sums conjecture for iterated rascal triangles is true for every row

n = 4i+ 3, i ≥ 0.

Proposition 2.2. For every i

4i+3∑
k=0

(
4i+ 3

k

)
i

= 24i+2
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