ROW SUMS CONJECTURE IN ITERATED RASCAL TRIANGLES

PETRO KOLOSOV

ABSTRACT. In this manuscript we review and prove the following conjecture for row sums of iterated rascal triangles. For every i

$$\sum_{k=0}^{4i+3} \binom{4i+3}{k}_i = 2^{4i+2}$$

where $\binom{n}{k}_{i}$ is an iterated rascal number.

CONTENTS

1.	Introduction	1
2.	Row sums conjecture	3
3.	Acknowledgements	4
References		4

1. INTRODUCTION

Rascal triangle is Pascal-like numeric triangle developed in 2010 by three middle school students, Alif Anggoro, Eddy Liu, and Angus Tulloch [1]. During math classes they were

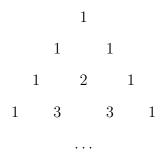
2010 Mathematics Subject Classification. 11B25,11B99.

Key words and phrases. Pascal's triangle, Rascal triangle, Binomial coefficients, Binomial identities, Binomial theorem, Generalized Rascal triangles, Iterated rascal triangles, Iterated rascal numbers, Number triangle, Arithmetic sequence, Vandermonde identity, Vandermonde convolution.

Date: July 5, 2024.

Sources: https://github.com/kolosovpetro/RowSumsConjectureInRascalTriangle

challenged to provide the next row for the following number triangle



Teacher's expected answer was the one that matches Pascal's triangle, e.g "1 4 6 4 1". However, Anggoro, Liu, and Tulloch suggested "1 4 5 4 1" instead. They devised this new row via what they called diamond formula

$$\mathbf{South} = \frac{\mathbf{East} \cdot \mathbf{West} + 1}{\mathbf{North}}$$

So they obtained the following triangle

_

n/k	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	5	4	1			
5	1	5	7	7	5	1		
6	1	6	9	10	9	6	1	
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	1	7	11	13	13	11	7	1

Table 1. Rascal triangle.

Indeed, the forth row is "1 4 5 4 1" because $4 = \frac{1\cdot3+1}{1}$ and $5 = \frac{3\cdot3+1}{2}$. Since then, a lot of work has been done over the topic of rascal triangles. In this article we stick our attention to the one of rascal triangles generalizations, namely iterated rascal triangles [2]. Iterated rascal number is defined via a sum of binomial coefficients multiplication

Definition 1.1. Iterated rascal number

$$\binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{m}$$
(1.1)

Thus, the rascal triangle (1) is the triangle generated by $\binom{n}{k}_1$.

2. Row sums conjecture

As we see iterated rascal triangles are indeed of Pascal-like triangles family. If rascal triangles are of Pascal-like triangles family, then similar properties must hold. I believe that is how the authors of [2] were thinking proposing the row sums conjecture for iterated rascal triangles.

Conjecture 2.1. (Conjecture 7.5 in [2].) For every i

$$\sum_{k=0}^{4i+3} \binom{4i+3}{k}_{i} = 2^{4i+2}$$

where $\binom{n}{k}_i$ is an iterated rascal number.

Proof. Rewrite conjecture statement explicitly as

$$\sum_{k=0}^{4i+3} \sum_{m=0}^{i} \binom{4i+3-k}{m} \binom{k}{m} = 2^{4i+2}$$

Rearranging sums and omitting summation bounds yields

$$\sum_{m=0}^{i} \sum_{k} \binom{4i+3-k}{m} \binom{k}{m} = 2^{4i+2}$$
(2.1)

In Concrete mathematics [[3], p. 169, eq (5.26)], Knuth et al. provide the identity for the column sum of binomial coefficients multiplication

$$\sum_{k=0}^{l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1}$$
(2.2)

We can observe this pattern in the equation (2.1), thus the sum $\sum_{k} \binom{4i+3-k}{m} \binom{k}{m}$ equals to

$$\sum_{k} \binom{4i+3-k}{m} \binom{k}{m} = \binom{4i+4}{2m+1}$$

Therefore, conjecture (2.1) is equivalent to

$$\sum_{m=0}^{i} \binom{4i+4}{2m+1} = 2^{4i+2}$$

Note that

$$\sum_{m=0}^{2i+1} \binom{4i+4}{2m+1} = 2^{4i+3}$$

So that

$$\frac{1}{2}\sum_{m=0}^{2i+1} \binom{4i+4}{2m+1} = \sum_{m=0}^{i} \binom{4i+4}{2m+1} = 2^{4i+2}$$

This completes the proof.

Therefore, the row sums conjecture for iterated rascal triangles is true for every row $n = 4i + 3, i \ge 0.$

Proposition 2.2. For every i

$$\sum_{k=0}^{4i+3} \binom{4i+3}{k}_i = 2^{4i+2}$$

3. Acknowledgements

Author is grateful to Oleksandr Kulkov, Markus Scheuer, Amelia Gibbs for their valuable feedback and suggestions regarding the row sums conjecture (2.1).

References

- [1] Anggoro, Alif and Liu, Eddy and Tulloch, Angus. The Rascal Triangle. The College Mathematics Journal, 41(5):393–395, 2010. https://doi.org/10.4169/074683410X521991.
- [2] Gregory, Jena and Kronholm, Brandt and White, Jacob. Iterated rascal triangles. Aequationes mathematicae, pages 1–18, 2023. https://doi.org/10.1007/s00010-023-00987-6.
- [3] Graham, Ronald L. and Knuth, Donald E. and Patashnik, Oren. Concrete mathematics: a foundation for computer science. Pearson Education India, 1994.

Version: 1.0.2-tags-v1-0-1.5+tags/v1.0.1.4020ca7

SOFTWARE DEVELOPER, DEVOPS ENGINEER Email address: kolosovp94@gmail.com URL: https://kolosovpetro.github.io