SOFTWARE PRODUCT RELEASE FLOW: A PROPOSAL

PETRO KOLOSOV

ABSTRACT. In this document software product release process is proposed and discussed.

CONTENTS
1. Introduction 1
1.1. Release process 2
1.2. Hotfix strategy 4
2. Conclusions 5
References)

1. INTRODUCTION

Release flow is a set of steps to perform to release upcoming version of software product.
Main aim of this document is to present simple and working model of software release
using Semantic versioning [!], Azure pipelines and Mainline development [2]. Mainline
development is also known as GitHub flow. Current document is motivated by Microsoft’s
Adopt a GIT branching strategy available at [3]. The picture below shows the main idea of
GitHub flow

Date: January 4, 2025.
Key words and phrases. Software engineering, DevOps, Software release, GitHub flow, GitLab flow,

Azure DevOps, Azure pipelines, Semantic versioning, GitVersion, CI/CD .

Sources: https://github.com/kolosovpetro/ReleaseFlowProposal
1

https://github.com/kolosovpetro/ReleaseFlowProposal

SOFTWARE PRODUCT RELEASE FLOW: A PROPOSAL 2

create branch merge branch

‘master’ branch

get feedback

itch
commit changes test changes
Pull Request

Figure 1. GitHub Flow diagram.

e Master — branch that contains tested, validated and verified code, ready to be re-
leased and deployed to production.

e Feature — branch that contains implementation of a new feature according to sprint
plan. The feature branch is based onto master.

e Bugfix - branch that contains non-critical bug fix. The bugfix branch is based onto
master, and merged back to master after fix is done.

e Release/v* — branch that contains upcoming release state of software product,
serves to keep small changes and updates to CHANGELOG file. The Release/v* branch
is based onto master. The Release/v* branch is considered to be long-living branch,
it should not be deleted after code is deployed to production. After release is com-
pleted it is merged back to master.

e Hotfix — branch that contains critical bug fix. It is used to patch production envi-
ronment and must be released as quick as possible. The hotfix branch is based onto
the latest released Release/v* branch. After hotfix is released it is merged back to

its base Release/v* and Cherry-picked [!] by master.

1.1. Release process. Having all above, assume we have initial semantic version of our

application as v1.0.0, so that we must release upcoming version. The version v1.0.0 has

SOFTWARE PRODUCT RELEASE FLOW: A PROPOSAL 3

been tested by QA team, so that release was approved by whole team. General release steps

to perform are following

(1)

(4)

(5)

Code phase. Software engineer creates pull request from recent feature branch
to master branch, this pull request triggers Continuous Integration (CI) to start, CI
runs tests, code quality checks etc., but deployment is not started yet, only CI.
Code phase. After all CI checks passed, pull request reviewed by team and every
comment from code review is fixed — the feature branch is ready to be merged into
master branch. No CI/CD pipeline triggered by the merge.
Code phase. Next, release engineer reviews software product changes documenting
them in CHANGELOG file. Release engineer decides on the next Semantic Version [1]
increment. For example, software product has breaking changes, then release engineer
decides to increment the major part of semantic version, so that v0.1.1 -> v1.0.0
Code phase. Release engineer creates new release as follows

e Checkout to release branch: git checkout -b release/v1.0.0

e Adding minor changes and CHANGELOG file update

e Push release branch to remote: git push origin release/v1.0.0

e Create tag: git tag -a v1.0.0 -m "Release v1.0.0"

e Push tag: git push origin v1.0.0
Build phase. After new TAG is pushed to the remote repository, the build pipeline
is being triggered [5], initializing the build phase of DevOps cycle. Therefore, the
code is being built, tested and specific artifacts are being created and published.
Release phase. Release engineer validates the build artifacts, underlying infras-
tructure and deployment automations, ensuring smooth and reliable upcoming de-
ployment.
Deploy phase. There are a few deployments scheduled including the environments
DEV, QA, UAT. Deployments to QA and UAT environments are to be approved by desig-

nated personnel, meanwhile DEV environment to be deployed automatically.

SOFTWARE PRODUCT RELEASE FLOW: A PROPOSAL 4
(8) Finally, the Release/v* branch is merged back to master after deployment is com-

plete.

Entire release process is shown on the picture below

feature
—

master
— U,), O

release/v* tag (ousl« event
— \O triggers build Dev/QA Deployment
\,:Pel‘mes /

q% 0 > PROD Deployment

.

UAT De(aloyment

Figure 2. Release flow diagram.

1.2. Hotfix strategy. Assume that our current released version of software product is
v1.0.0 and there is a critical bug appears. In order to release a hotfix the following set

of steps to be performed

1) Hotfix to be assigned to a software engineer.
2) Software engineer creates a new branch hotfix/* from the latest Release/v* branch.
3) Software engineer fixes the bug in the hotfix/* branch.

4) Software engineer creates a pull request hotfix/* -> release/vx.

(1)
(2)
(3)
(4)
(5) The pull request hotfix/* -> release/vx is reviewed by team and merged.
(6) Release engineer creates a new tag v1.0.1 from the latest release/v* branch.
(7) Hotfix deployment process is started after new tag is pushed.

(8) Hotfix is deployed to production.

(9)

9) Release engineer creates a pull request release/v* -> master that contains the
hotfix.

(10) The pull request release/v* -> master is reviewed by team and merged.

SOFTWARE PRODUCT RELEASE FLOW: A PROPOSAL 5

feature/*

3

master

(-

O) M)
Release/v* \&
hotfix/*

Figure 3. Hotfix diagram.

]

J

2. CONCLUSIONS

In this document software product release process is proposed and discussed. Few useful

GIT commands worth to remember:

e git tag -a v0.1.0 -m "my version 0.1.0"
e git tag -d <tag_name>
e git push origin <tag name>

e git push --delete origin <tag name>

REFERENCES

[1] Semantic Versioning Docs. Semantic Versioning 2.0.0, 2023. https://semver.org/.

[2] GitVersion Docs. Mainline Development, 2023. https://gitversion.net/docs/reference/modes/
mainline.

[3] Microsoft Documentation. Adopt a Git branching strategy, 2022. https://learn.microsoft.com/
en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops.

[4] Atlasian Docs. Git Cherry Pick, 2023. https://www.atlassian.com/git/tutorials/cherry-pick.

[5] Microsoft Documentation. Build Azure Repos Git or TFS Git repositories, 2023. https://learn.

microsoft.com/en-us/azure/devops/pipelines/repos/azure-repos-git.

https://semver.org/
https://gitversion.net/docs/reference/modes/mainline
https://gitversion.net/docs/reference/modes/mainline
https://learn.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://www.atlassian.com/git/tutorials/cherry-pick
https://learn.microsoft.com/en-us/azure/devops/pipelines/repos/azure-repos-git
https://learn.microsoft.com/en-us/azure/devops/pipelines/repos/azure-repos-git

SOFTWARE PRODUCT RELEASE FLOW: A PROPOSAL

Version: 1.0.1-tags-v1-0-0.11+tags/v1.0.0.551d9b0

SOFTWARE DEVELOPER, DEVOPS ENGINEER
Email address: kolosovp940gmail . com

URL: https://kolosovpetro.github.io

	1. Introduction
	1.1. Release process
	1.2. Hotfix strategy

	2. Conclusions
	References

