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ABSTRACT. In this manuscript we prove a remarkable Binomial identity (5.43) given by

Donald Knuth in his fundamental work entitled Concrete Mathematics.

1. INTRODUCTION

In this manuscript we prove a remarkable Binomial identity (5.43) given by Donald Knuth

in his fundamental work entitled Concrete Mathematics, see [1, p. 190)]

Proposition 1.1 (Knuth’s Binomial identity (5.43)). For non-negative integers n, and for

(1) (7
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arbitrary integers s, r

We begin our proof by recalling the formula for n-order finite differences of function f
" /n
A" f(z) = —1)"F flx+ k).
0= 3 ()0

Now, we define the binomial function F, such that

Fiz) = (r—nsx)_

Thus, the t-order forward finite difference of F' is

sma-£ Q) )

k=0
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We may notice that the equation above quite reminds the structure of Knuth’s binomial
identity (1.1). By evaluating A'F(x) in zero, we reach our goal even further, because
t
t\ (r— sk
A'F(0) = —1)"*,
0= ()(")

Next, by setting t = n gives the exact structure of (1.1), such that

wro-3; >(“3’“)

Still, it may not be immediately clear why A"F(x) = (—1)"s". To make things work, we
refer to the formula (5.42) in Concrete mathematics, see [1, p. 190],

Z (Z) (—=1)* [ao + a1k 4+ ask® + - + a k"] = (—1)"nla,,

k

which states that n-th difference of a polynomial of degree n in k equals to the coefficient
of k™ multiplied by (—1)"n!. This helps us a lot, because the binomial coefficient (T_nSk) is
actually a polynomial of degree n in » — sk. The famous identity in Stirling numbers of the

first kind m shows it clearly

By Binomial theorem,

Thus,
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Hence, the coefficient a,, of k™ equals to

Which implies that,

ATE(O) =S (Z) (T - Sk) (—1)"F = (—1)"nla, = (—1)"n!

n
k=0

Therefore, the Knuth’s identity (1.1) is indeed true

s = (—1)"A"F(0) = zn: (Z) (T _HSI“) (—1)*.

k=0

This completes the proof of Proposition (1.1).

O

It is quite remarkable that although the identity (1.1) is a special case of forward finite

differences of F(z) = ("*") evaluated in zero s" = (—1)"A"F(0) — it holds for all z, because

n

the coefficient of £™ remains s™ for all z

Proposition 2.1 (Generalized Knuths’ binomial identity). For non-negative integers n, and

for arbitrary integers s,r, x

r—sx—sk) i

Because the coefficient of k" in ( .

e

n! n

n

} K" ((r — sz) — sk)® = 2.

n!

Because, by Binomial theorem

(K" ((r — sz) — sk) = (—1)"° (g) (r — s2)°s"0 = (—1)"s™.

CONCLUSIONS

In this manuscript we have shown that the remarkable Binomial identity (1.1) given by

Donald Knuth in his fundamental work entitled Concrete Mathematics is indeed true. In

addition, we provide a generalization for identity (5.42) for all z, that is (2.1).
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Figure 1. Professor Knuth at Computer Science, the Bible, and Music - 2018

Lectures.
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