POLYNOMIAL IDENTITY INVOLVING BINOMIAL THEOREM AND FAULHABER’S FORMULA

PETRO KOLOSOV

Abstract. In this manuscript we show that for every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $A_{m,0}, A_{m,1}, \ldots, A_{m,m}$ such that the polynomial identity holds

$$n^{2m+1} = \sum_{k=0}^{n} A_{m,0}k^0(n-k)^0 + A_{m,1}(n-k)^1 + \cdots + A_{m,m}k^m(n-k)^m$$

Contents

1. Introduction 1
2. Approach via a system of linear equations 3
3. Approach via recursion 9
4. Approach via recursion: Examples 12
5. Conclusions 14
References 15

1. Introduction

Considering the table of forward finite differences of the polynomial n^3

Date: January 25, 2024.

2010 Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Binomial theorem, Polynomial identities, Binomial coefficients, Bernoulli numbers, Pascal’s triangle, Faulhaber’s formula, Polynomials.
We can observe easily that finite differences \(^1\) of the polynomial \(n^3\) may be expressed according to the following relation, via rearrangement of the terms

\[
\Delta(0^3) = 1 + 6 \cdot 0 \\
\Delta(1^3) = 1 + 6 \cdot 0 + 6 \cdot 1 \\
\Delta(2^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 \\
\Delta(3^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + 6 \cdot 3 \\
\vdots
\Delta(n^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + 6 \cdot 3 + \cdots + 6 \cdot n
\]

Furthermore, the polynomial \(n^3\) is identical to

\[
n^3 = [1 + 6 \cdot 0] + [1 + 6 \cdot 0 + 6 \cdot 1] + [1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2] + \cdots \\
+ [1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + \cdots + 6 \cdot (n - 1)]
\]

\(^1\)One may assume that it is possible to reach the form \(n^{2m+1} = \sum_{k=0}^{n} A_{m,0} k^0 (n-k)^0 + A_{m,1} (n-k)^1 + \cdots + A_{m,m} k^m (n-k)^m\) simply taking finite differences of the polynomial \(n^{2m+1}\) up to order of \(2m+1\) and interpolating it backwards similarly as shown in (1.1). However, my observations do not provide any evidence of such assumption. Interestingly enough is that we could have been arrived to the pure differential approach of the relation (1.4) then.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n^3)</th>
<th>(\Delta(n^3))</th>
<th>(\Delta^2(n^3))</th>
<th>(\Delta^3(n^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>19</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>37</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>61</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>91</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>216</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>343</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rearranging the above equation, we get

\[n^3 = n + (n - 0) \cdot 6 \cdot 0 + (n - 1) \cdot 6 \cdot 1 + (n - 2) \cdot 6 \cdot 2 + \cdots + 1 \cdot 6 \cdot (n - 1) \]

Therefore, we can consider the polynomial \(n^3 \) as

\[n^3 = \sum_{k=1}^{n} 6k(n-k) + 1 \] \hspace{1cm} (1.2)

Assume that equation (1.2) has an implicit form as follows

\[n^3 = \sum_{k=1}^{n} A_{1,1}k^1(n-k)^1 + A_{1,0}k^0(n-k)^0, \] \hspace{1cm} (1.3)

where \(A_{1,1} = 6 \) and \(A_{1,0} = 1 \), respectively. Note that here the power of 3 is actually defined by \(2m+1 \) where \(m = 1 \). So is there a generalization of the relation (1.3) for all positive odd powers \(2m+1, \ m = 0,1,2,\ldots? \) Therefore, let be a conjecture

Conjecture 1.1. For every \(n \geq 1 \), \(n, m \in \mathbb{N} \) there are coefficients \(A_{m,0}, A_{m,1}, \ldots, A_{m,m} \) such that

\[n^{2m+1} = \sum_{k=1}^{n} A_{m,0}k^0(n-k)^0 + A_{m,1}(n-k)^1 + \cdots + A_{m,m}k^m(n-k)^m \] \hspace{1cm} (1.4)

2. Approach via a system of linear equations

One approach to prove the conjecture was proposed by Albert Tkaczyk in his series of the preprints [1,2] and extended further at [3]. The main idea is to construct and solve a system of linear equations. Such a system of linear equations is constructed via expanding the definition of the coefficients \(A_{m,r} \) applying Binomial theorem [4] and Faulhaber’s formula [5]. Consider the definition of the coefficients \(A_{m,r} \)

\[n^{2m+1} = \sum_{r=0}^{m} A_{m,r} \sum_{k=1}^{n} k^r(n-k)^r \] \hspace{1cm} (2.1)
Expanding the \((n - k)^r\) part via Binomial theorem we get

\[
n^{2m+1} = \sum_{r=0}^{m} A_{m,r} \sum_{k=1}^{n} k^r (n - k)^r
\]

\[
= \sum_{r=0}^{m} A_{m,r} \sum_{k=1}^{n} k^r \left[\sum_{t=0}^{r} (-1)^t \binom{r}{t} n^{r-t} k^t \right]
\]

\[
= \sum_{r=0}^{m} A_{m,r} \left[\sum_{t=0}^{r} (-1)^t \binom{r}{t} n^{r-t} \sum_{k=1}^{n} k^{t+r} \right]
\]

Applying the Faulhaber’s formula to the sum \(\sum_{k=1}^{n} k^{t+r}\) we get

\[
n^{2m+1} = \sum_{r=0}^{m} A_{m,r} \left[\sum_{t=0}^{r} (-1)^t \binom{r}{t} n^{r-t} \sum_{k=1}^{n} k^{t+r} \right]
\]

\[
= A_{m,0}n + A_{m,1} \left[\frac{1}{6} (-n + n^3) \right] + A_{m,2} \left[\frac{1}{30} (-n + n^5) \right]
\]

\[
+ A_{m,3} \left[\frac{1}{420} (-10n + 7n^3 + 3n^7) \right] + A_{m,4} \left[\frac{1}{630} (-21n + 20n^3 + n^9) \right]
\]

\[
+ A_{m,5} \left[\frac{1}{2772} (-210n + 231n^3 - 22n^5 + n^{11}) \right]
\]

\[
+ A_{m,6} \left[\frac{1}{60060} (-15202n + 18200n^3 - 3003n^5 + 5n^{13}) \right]
\]

\[
+ A_{m,7} \left[\frac{1}{51480} (-60060n + 76010n^3 - 16380n^5 + 429n^7 + n^{15}) \right]
\]

\[
+ A_{m,8} \left[\frac{1}{218790} (-1551693n + 2042040n^3 - 516868n^5 + 26520n^7 + n^{17}) \right] + \cdots
\]

Given fixed \(m\), the coefficients \(A_{m,r}\) can be determined via a system of linear equations.

Consider an example

Example 2.1. Let be \(m = 1\) so that we have the following relation defined by (2.2)

\[
A_{m,0}n + A_{m,1} \left[\frac{1}{6} (-n + n^3) \right] - n^3 = 0
\]

Multiplying by 6 right-hand side and left-hand side, we get

\[
6A_{1,0}n + A_{1,1}(-n + n^3) - 6n^3 = 0
\]
Opening brackets and rearranging the terms gives

\[6A_{1,0} - A_{1,1}n + A_{1,1}n^3 - 6n^3 = 0 \]

Combining the common terms yields

\[n(6A_{1,0} - A_{1,1}) + n^3(A_{1,1} - 6) = 0 \]

Therefore, the system of linear equations follows

\[
\begin{cases}
6A_{1,0} - A_{1,1} = 0 \\
A_{1,1} - 6 = 0
\end{cases}
\]

Solving it, we get

\[
\begin{cases}
A_{1,1} = 6 \\
A_{1,0} = 1
\end{cases}
\]

So that odd-power identity (2.1) holds

\[n^3 = \sum_{k=1}^{n} 6k(n - k) + 1 \]

It is also clearly seen why the above identity is true evaluating the terms \(6k(n - k) + 1\) over \(0 \leq k \leq n\) as it is shown at [6].

Example 2.2. Let be \(m = 2\) so that we have the following relation defined by (2.2)

\[A_{m,0}n + A_{m,1} \left[\frac{1}{6}(-n + n^3) \right] + A_{m,2} \left[\frac{1}{30}(-n + n^5) \right] - n^5 = 0 \]

Multiplying by 30 right-hand side and left-hand side, we get

\[30A_{2,0}n + 5A_{2,1}(-n + n^3) + A_{2,2}(-n + n^5) - 30n^5 = 0 \]

Opening brackets and rearranging the terms gives

\[30A_{2,0} - 5A_{2,1}n + 5A_{2,1}n^3 - A_{2,2}n + A_{2,2}n^5 - 30n^5 = 0 \]

Combining the common terms yields

\[n(30A_{2,0} - 5A_{2,1} - A_{2,2}) + 5A_{2,1}n^3 + n^5(A_{2,2} - 30) = 0 \]
Therefore, the system of linear equations follows

\[
\begin{align*}
30A_{2,0} - 5A_{2,1} - A_{2,2} &= 0 \\
a_{2,1} &= 0 \\
A_{2,2} - 30 &= 0
\end{align*}
\]

Solving it, we get

\[
\begin{align*}
A_{2,2} &= 30 \\
A_{2,1} &= 0 \\
A_{2,0} &= 1
\end{align*}
\]

So that odd-power identity (2.1) holds

\[
n^5 = \sum_{k=1}^{n} 30k^2(n-k)^2 + 1
\]

It is also clearly seen why the above identity is true evaluating the terms $30k^2(n-k)^2 + 1$ over $0 \leq k \leq n$ as it is shown at [7].

Example 2.3. Let be $m = 3$ so that we have the following relation defined by (2.2)

\[
A_{m,0}n + A_{m,1} \left[\frac{1}{6}(-n + n^3) \right] + A_{m,2} \left[\frac{1}{30}(-n + n^5) \right] + A_{m,3} \left[\frac{1}{420}(-10n + 7n^3 + 3n^7) \right] - n^7 = 0
\]

Multiplying by 420 right-hand side and left-hand side, we get

\[
420A_{3,0}n + 70A_{2,1}(-n + n^3) + 14A_{2,2}(-n + n^5) + A_{3,3}(-10n + 7n^3 + 3n^7) - 420n^7 = 0
\]

Opening brackets and rearranging the terms gives

\[
420A_{3,0}n - 70A_{3,1} + 70A_{3,1}n^3 - 14A_{3,2}n + 14A_{3,2}n^5 - 10A_{3,3}n + 7A_{3,3}n^3 + 3A_{3,3}n^7 - 420n^7 = 0
\]

Combining the common terms yields

\[
n(420A_{3,0} - 70A_{3,1} - 14A_{3,2} - 10A_{3,3})
+ n^3(70A_{3,1} + 7A_{3,3}) + n^514A_{3,2} + n^7(3A_{3,3} - 420) = 0
\]
Therefore, the system of linear equations follows

\[
\begin{align*}
420A_{3,0} - 70A_{3,1} - 14A_{3,2} - 10A_{3,3} &= 0 \\
70A_{3,1} + 7A_{3,3} &= 0 \\
A_{3,2} - 30 &= 0 \\
3A_{3,3} - 420 &= 0
\end{align*}
\]

Solving it, we get

\[
\begin{align*}
A_{3,3} &= 140 \\
A_{3,2} &= 0 \\
A_{3,1} &= -\frac{7}{70}A_{3,3} = -14 \\
A_{3,0} &= \frac{(70A_{3,1} + 10A_{3,3})}{420} = 1
\end{align*}
\]

So that odd-power identity (2.1) holds

\[
n^7 = \sum_{k=1}^{n} 140k^3(n - k)^3 - 14k(n - k) + 1
\]

It is also clearly seen why the above identity is true evaluating the terms $140k^3(n - k)^3 - 14k(n - k) + 1$ over $0 \leq k \leq n$ as it is shown at [8].

Example 2.4. Let be $m = 4$ so that we have the following relation defined by (2.2)

\[
A_{m,0}n + A_{m,1} \left(\frac{1}{6}(-n + n^3)\right) + A_{m,2} \left(\frac{1}{30}(-n + n^5)\right) + A_{m,3} \left(\frac{1}{420}(-10n + 7n^3 + 3n^7)\right) + A_{m,4} \left(\frac{1}{630}(-21n + 20n^3 + n^9)\right) - n^9 = 0
\]

Multiplying by 630 right-hand side and left-hand side, we get

\[
630A_{4,0}n + 105A_{4,1}(-n + n^3) + 21A_{4,2}(-n + n^5) + \frac{3}{2}A_{4,3}(-10n + 7n^3 + 3n^7) + A_{4,4}(-21n + 20n^3 + n^9) - 630n^9 = 0
\]
Opening brackets and rearranging the terms gives

\[
630A_{4,0}n - 105A_{4,1}n + 105A_{4,1}n^3 - 21A_{4,2}n + 21A_{4,2}n^5 \\
- \frac{3}{2}A_{4,3} \cdot 10n + \frac{3}{2}A_{4,3} \cdot 7n^3 + \frac{3}{2}A_{4,3} \cdot 3n^7 \\
- 21A_{4,4}n + 20A_{4,4}n^3 + A_{4,4}n^9 - 630n^9 = 0
\]

Combining the common terms yields

\[
n(630A_{4,0} - 105A_{4,1} - 21A_{4,2} - 15A_{4,3} - 21A_{4,4}) \\
+ n^3 \left(105A_{4,1} + \frac{21}{2}A_{4,3} + 20A_{4,4}\right) + n^5(21A_{4,2}) \\
+ n^7 \left(\frac{9}{2}A_{4,3}\right) + n^9(A_{4,4} - 630) = 0
\]

Therefore, the system of linear equations follows

\[
\begin{cases}
630A_{4,0} - 105A_{4,1} - 21A_{4,2} - 15A_{4,3} - 21A_{4,4} = 0 \\
105A_{4,1} + \frac{21}{2}A_{4,3} + 20A_{4,4} = 0 \\
A_{4,2} = 0 \\
A_{4,3} = 0 \\
A_{4,4} - 630 = 0
\end{cases}
\]

Solving it, we get

\[
\begin{cases}
A_{4,4} = 630 \\
A_{4,3} = 0 \\
A_{4,2} = 0 \\
A_{4,1} = -\frac{20}{105}A_{4,4} = -120 \\
A_{4,0} = \frac{105A_{4,1} + 21A_{4,4}}{630} = 1
\end{cases}
\]

So that odd-power identity (2.1) holds

\[
n^9 = \sum_{k=1}^{n} 630k^4(n-k)^4 - 120k(n-k) + 1
\]
3. Approach via recursion

Another approach to determine the coefficients $A_{m,r}$ was provided by Dr. Max Alekseyev in MathOverflow discussion [9]. Generally, the idea was to determine the coefficients $A_{m,r}$ recursively starting from the base case $A_{m,m}$ up to $A_{m,r-1}, \ldots, A_{m,0}$ via previously determined values. Consider the Faulhaber’s formula

$$
\sum_{k=1}^{n} k^p = \frac{1}{p+1} \sum_{j=0}^{p} \binom{p+1}{j} B_j n^{p+1-j}
$$

It is very important to note that summation bound is p while binomial coefficient upper bound is $p+1$. It means that we cannot skip summation bounds unless we do some trick as

$$
\sum_{k=1}^{n} k^p = \frac{1}{p+1} \sum_{j=0}^{p} \binom{p+1}{j} B_j n^{p+1-j} = \left[\frac{1}{p+1} \sum_{j=0}^{p+1} \binom{p+1}{j} B_j n^{p+1-j} \right] - B_{p+1}
$$

Using the Faulhaber’s formula $\sum_{k=1}^{n} k^p = \left[\frac{1}{p+1} \sum_{j=0}^{p} \binom{p+1}{j} B_j n^{p+1-j} \right] - B_{p+1}$ we get

$$
\sum_{k=1}^{n} k^p (n-k)^r = \sum_{t=0}^{r} (-1)^t \binom{r}{t} n^{r-t} \sum_{k=1}^{n} k^{t+r}
$$

$$
= \sum_{t=0}^{r} (-1)^t \binom{r}{t} n^{r-t} \left[\frac{1}{t+r+1} \sum_{j} \binom{t+r+1}{j} B_j n^{t+r+1-j} - B_{t+r+1} \right]
$$

$$
= \sum_{t=0}^{r} \binom{r}{t} \left[\frac{(-1)^t}{t+r+1} \sum_{j} \binom{t+r+1}{j} B_j n^{2r+1-j} - B_{t+r+1} \right]
$$

$$
= \sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^t}{t+r+1} \sum_{j} \binom{t+r+1}{j} B_j n^{2r+1-j} - \sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^t}{t+r+1} B_{t+r+1} n^{r-t}
$$

$$
= \sum_{j} \sum_{t} \binom{r}{t} \frac{(-1)^t}{t+r+1} \binom{t+r+1}{j} B_j n^{2r+1-j} - \sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^t}{t+r+1} B_{t+r+1} n^{r-t}
$$

$$
= \sum_{j} B_j n^{2r+1-j} \sum_{t} \binom{r}{t} \frac{(-1)^t}{t+r+1} \binom{t+r+1}{j} - \sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^t}{t+r+1} B_{t+r+1} n^{r-t}
$$
Now, we notice that
\[
\sum_t \binom{r}{t} \frac{(-1)^t}{r + t + 1} \binom{r + t + 1}{j} = \begin{cases}
\frac{1}{(2r+1)(2r)}, & \text{if } j = 0; \\
\frac{(-1)^r}{j} \binom{r}{2r-j+1}, & \text{if } j > 0.
\end{cases}
\] (3.1)
An elegant proof of the above binomial identity is provided at [10]. In particular, the equation (3.1) is zero for $0 < t \leq j$. So that taking $j = 0$ we have
\[
\sum_{k=1}^{n} k^r(n-k)^r = \frac{1}{(2r+1)(2r)} n^{2r+1} + \left[\sum_{j=1}^{r} B_j n^{2r+1-j} \sum_{t} \binom{r}{t} \frac{(-1)^t}{t + r + 1} \binom{t + r + 1}{j} \right] - \left[\sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^t}{t + r + 1} B_{t+r+1} n^{r-t} \right]
\]
Now let’s simplify the double summation applying the identity (3.1)
\[
\sum_{k=1}^{n} k^r(n-k)^r = \frac{1}{(2r+1)(2r)} n^{2r+1} + \left[\sum_{j=1}^{r} \binom{r}{j} \frac{(-1)^r}{2r - j + 1} B_j n^{2r+1-j} \right] - \left[\sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^t}{t + r + 1} B_{t+r+1} n^{r-t} \right]
\]
Hence, introducing $\ell = 2r - j + 1$ to (*) and $\ell = r - t$ to (φ) we collapse the common terms of the above equation so that we get
\[
\sum_{k=1}^{n} k^r(n-k)^r = \frac{1}{(2r+1)(2r)} n^{2r+1} + \sum_{\ell} \binom{r}{\ell} \frac{(-1)^{r-\ell}}{2r + 1 - \ell} B_{2r+1-\ell} n^{\ell} - \sum_{\ell} \binom{r}{\ell} \frac{(-1)^{r-\ell}}{2r + 1 - \ell} B_{2r+1-\ell} n^{\ell}
\]
Using the definition of $A_{m,r}$, we obtain the following identity for polynomials in n
\[
\sum_{r} A_{m,r} \frac{1}{(2r+1)(2r)} n^{2r+1} + 2 \sum_{r} A_{m,r} \sum_{\text{odd } \ell} \binom{r}{\ell} B_{2r+1-\ell} n^{\ell} \equiv n^{2m+1}
\]
Replacing odd ℓ by d we get

\[
\sum_r A_{m,r} \frac{1}{(2r + 1)(\frac{2r}{2})}n^{2r+1} + 2 \sum_r A_{m,r} \sum_d \frac{(-1)^r}{2r - 2d} \left(\frac{r}{2d + 1} \right) B_{2r-2d}n^{2d+1} \equiv n^{2m+1}
\]

\[
\sum_r A_{m,r} \left[\frac{1}{(2r + 1)(\frac{2r}{2})}n^{2r+1} \right] + 2 \sum_r A_{m,r} \left[\sum_d \frac{(-1)^r}{2r - 2d} \left(\frac{r}{2d + 1} \right) B_{2r-2d}n^{2d+1} \right] - n^{2m+1} = 0
\]

(3.2)

Taking the coefficient of n^{2m+1} in (3.2), we get

\[A_{m,m} = (2m + 1) \left(\frac{2m}{m} \right)\]

and taking the coefficient of n^{2d+1} for an integer d in the range $m/2 \leq d < m$, we get

\[A_{m,d} = 0\]

Taking the coefficient of n^{2d+1} for d in the range $m/4 \leq d < m/2$ we get

\[A_{m,d} \frac{1}{(2d + 1)(\frac{2d}{2})} + 2(2m + 1) \left(\frac{2m}{m} \right) \left(\frac{m}{2d + 1} \right) \frac{(-1)^m}{2m - 2d} B_{2m-2d} = 0\]

i.e.

\[A_{m,d} = (-1)^{m-1} \frac{(2m + 1)!}{d!d!(m - 2d - 1)!} \frac{1}{m - d} B_{2m-2d}\]

Continue similarly we can express $A_{m,r}$ for each integer r in range $m/2^{s+1} \leq r < m/2^s$ (iterating consecutively $s=1,2,\ldots$) via previously determined values of $A_{m,d}$ as follows

\[A_{m,r} = (2r + 1) \left(\frac{2r}{r} \right) \sum_{d \geq 2r+1} A_{m,d} \left(\frac{d}{2r + 1} \right) \frac{(-1)^{d-1}}{d-r} B_{2d-2r}\]

Finally, the coefficient $A_{m,r}$ is defined recursively as

\[
A_{m,r} := \begin{cases}
(2r + 1) \left(\frac{2r}{r} \right), & \text{if } r = m; \\
(2r + 1) \left(\frac{2r}{r} \right) \sum_{d \geq 2r+1} A_{m,d} \left(\frac{d}{2r+1} \right) \frac{(-1)^{d-1}}{d-r} B_{2d-2r}, & \text{if } 0 \leq r < m; \\
0, & \text{if } r < 0 \text{ or } r > m,
\end{cases}
\]

(3.3)

where B_t are Bernoulli numbers [11]. It is assumed that $B_1 = \frac{1}{2}$. For example,
The coefficients $A_{m,r}$ are also registered in the OEIS [12, 13]. It is as well interesting to notice that row sums of the $A_{m,r}$ give powers of 2

$$\sum_{r=0}^{m} A_{m,r} = 2^{2m+1}$$

4. Approach via recursion: Examples

Consider the definition (3.3) of the coefficients $A_{m,r}$, it can be written as

$$A_{m,r} := \begin{cases}
(2r + 1)\binom{2r}{r}, & \text{if } r = m; \\
\sum_{d \geq 2r+1}^{m} A_{m,d} \binom{2r}{r} \binom{d}{2r + 1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r}, & \text{if } 0 \leq r < m; \\
0, & \text{if } r < 0 \text{ or } r > m,
\end{cases}$$

Therefore, let be a definition of the real coefficient $T(d, r)$

Definition 4.1. Real coefficient $T(d, r)$

$$T(d, r) = (2r + 1)\binom{2r}{r} \binom{d}{2r + 1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r}$$

Example 4.2. Let be $m = 2$ so first we get $A_{2,2}$

$$A_{2,2} = 5 \binom{4}{2} = 30$$
Then $A_{2,1} = 0$ because $A_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $1 \leq d < 2$. Finally, the coefficient $A_{2,0}$ is

$$A_{2,0} = \sum_{d \geq 1}^{2} A_{2,d} \cdot T(d, 0) = A_{2,1} \cdot T(1, 0) + A_{2,2} \cdot T(2, 0)$$

$$= 30 \cdot \frac{1}{30} = 1$$

Example 4.3. Let be $m = 3$ so that first we get $A_{3,3}$

$$A_{3,3} = 7 \binom{6}{3} = 140$$

Then $A_{3,2} = 0$ because $A_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $2 \leq d < 3$. The $A_{3,1}$ coefficient is non-zero and calculated as

$$A_{3,1} = \sum_{d \geq 3}^{3} A_{3,d} \cdot T(d, 1) = A_{3,3} \cdot T(3, 1) = 140 \cdot \left(-\frac{1}{10} \right) = -14$$

Finally, the coefficient $A_{3,0}$ is

$$A_{3,0} = \sum_{d \geq 1}^{3} A_{3,d} \cdot T(d, 0) = A_{3,1} \cdot T(1, 0) + A_{3,2} \cdot T(2, 0) + A_{3,3} \cdot T(3, 0)$$

$$= -14 \cdot \frac{1}{6} + 140 \cdot \frac{1}{42} = 1$$

Example 4.4. Let be $m = 4$ so that first we get $A_{4,4}$

$$A_{4,4} = 9 \binom{8}{4} = 630$$

Then $A_{4,3} = 0$ and $A_{4,2} = 0$ because $A_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $2 \leq d < 4$. The value of the coefficient $A_{4,1}$ is non-zero and calculated as

$$A_{4,1} = \sum_{d \geq 3}^{4} A_{4,d} \cdot T(d, 1) = A_{4,3} \cdot T(3, 1) + A_{4,4} \cdot T(4, 1) = 630 \cdot \left(-\frac{4}{21} \right) = -120$$

Finally, the coefficient $A_{4,0}$ is

$$A_{4,0} = \sum_{d \geq 1}^{4} A_{4,d} \cdot T(d, 0) = A_{4,1} \cdot T(1, 0) + A_{4,4} \cdot T(4, 0) = -120 \cdot \frac{1}{6} + 630 \cdot \frac{1}{30} = 1$$
Example 4.5. Let be $m = 5$ so that first we get $A_{5,5}$

$$A_{5,5} = 11 \binom{10}{5} = 2772$$

Then $A_{5,4} = 0$ and $A_{5,3} = 0$ because $A_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $3 \leq d < 5$. The value of the coefficient $A_{5,2}$ is non-zero and calculated as

$$A_{5,2} = \sum_{d=5}^{5} A_{5,d} \cdot T(d, 2) = A_{5,5} \cdot T(5, 2) = 2772 \cdot \frac{5}{21} = 660$$

The value of the coefficient $A_{5,1}$ is non-zero and calculated as

$$A_{5,1} = \sum_{d=3}^{5} A_{5,d} \cdot T(d, 1) = A_{5,3} \cdot T(3, 1) + A_{5,4} \cdot T(4, 1) + A_{5,5} \cdot T(5, 1)$$

$$= 2772 \cdot \left(-\frac{1}{2} \right) = -1386$$

Finally, the coefficient $A_{5,0}$ is

$$A_{5,0} = \sum_{d=1}^{5} A_{5,d} \cdot T(d, 0) = A_{5,1} \cdot T(1, 0) + A_{5,2} \cdot T(2, 0) + A_{5,5} \cdot T(5, 0)$$

$$= -1386 \cdot \frac{1}{6} + 660 \cdot \frac{1}{30} + 2772 \cdot \frac{5}{66} = 1$$

5. Conclusions

In this manuscript, we have shown that for every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $A_{m,0}, A_{m,1}, \ldots, A_{m,m}$ such that the polynomial identity holds

$$n^{2m+1} = \sum_{k=0}^{m} A_{m,0}k^0(n-k)^0 + A_{m,1}(n-k)^1 + \cdots + A_{m,m}k^m(n-k)^m$$

In particular, the coefficients $A_{m,r}$ may be evaluated both ways, by constructing and solving a system of linear equations or applying recurrence relations; all these approaches are explained with examples in the sections 2 and 3, respectively. Moreover, to validate the results, there are supplementary Mathematica programs provided at [14].
POLYNOMIAL IDENTITY INVOLVING BINOMIAL THEOREM AND FAULHABER’S FORMULA

REFERENCES

