POLYNOMIAL IDENTITIES INVOLVING PASCAL’S TRIANGLE ROWS
PETRO KOLOSOV

ABSTRACT. In this short report we consider the famous binomial identity

*-£0)

k=0

Based on it, the following binomial identities are derived

where (}}) are binomial coefficients and (m, n) are non-negative integers.
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1. INTRODUCTION

We start from the famous relation about row sums of the Pascal triangle, that is

on — zn: (Z) (1.1)

k=0

where (7 ; are binomial coefficients | |. Identity (1.1) is straightforward

_ n!
k) = k(n—k)
because the Pascal’s triangle is
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n/kl0 1 2 3 4 5 6 7 8

0 |1

1 |1 1

2 |1 2 1

3113 3 1

4 11 4 6 4 1

5 |1 5 10 10 5 1

6 |1 6 15 20 15 6 1

7|1 7 21 35 35 21 7 1

8 |1 8 28 56 70 56 21 8 1
Table 1. Pascal’s triangle | ]. Each k—th term of n—th row is (})-1¥. Sequence

4007318 in OEIS [Slo64].

Consider a generating function such as fo(n, k) = (Z) - 2% The function fy(n, k) generates

the following Pascal-like triangle

n/k|0 1 2 3 4 ) 6 7 8
0 |1

1 /1 2

2 11 4 4

3 |1 6 12 8

4 11 8 24 32 16

5 |1 10 40 80 80 32

6 |1 12 60 160 240 192 064

7 11 14 8 280 560 672 448 128

8§ |1 16 112 448 1120 1792 1792 1024 256

Table 2. Triangle generated by the function (Z) -2k Can be reproduced using
Mathematica function GeneratePascalLikeTriangle[2, 8] at | ]. Sequence

4013609 in OEIS [Slo64].

Now we can notice that

> ()2 (12


https://oeis.org/A007318
https://oeis.org/A013609
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Continue similarly we can generalize the equations (1.1), (1.2) as follows

k=0
50

k=0

k=0

m"—i(Z)%m—l)k

k=0
Obviously, it is simply a form of the Binomial theorem (m + 1)" = >~} _, (Z) mF. Therefore,

we conclude this version of the Binomial theorem as

Theorem 1.1. (Binomial theorem.) The following identity involving polynomial m™ holds

- SE O

where (m,n) are non-negative integers.

Proof. Recall the induction over m, let be a base case m = 2, hereby

on — i (Z) (2 - 1)k (1.4)

k=0

Reviewing an equation (1.4) we can see that

2y =3 (3) ooy (15)

Continue similarly it is straightforward that m" =", (Z) -(m—1)*. However, we are able

to expand the part (m — 1)¥ by means of Binomial theorem | |, that is

1= (&) -y = 3 (5 s

=0 \J =0 \J
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So that now we are able to merge both results m™ = Y7 (%) - (m — 1)* and (m — 1)* =
S () (1) = T () (1)mE to recetve

) -E L)
kno Z—o: (Z) (l;) (—1)rim?

J

S5 (1) (8o

Theorem (1.1) may be verified using Mathematica command PolynomialIldentity[m, n]

mn

=

at | ]. This completes the proof. O
Moreover, by means of the binomial identity [| |, Chapter 4]

(:)6)=0)65)

The polynomial m™ is identical to

R 6L [ ST ot ) S

2. CONCLUSIONS

The following binomial identities are derived

T[S » 0T R

Moreover, above results are verified by means of specified Mathematica scripts available at

github.com/kolosovpetro/PolynomialldentitiesInvolvingPascalsTriangleRows.

3. VERIFICATION OF THE RESULTS

Main results of this paper may be verified using Mathematica scripts from [ | as

follows


https://github.com/kolosovpetro/PolynomialIdentitiesInvolvingPascalsTriangleRows/blob/develop/mathematica/PolynomialIdentitiesInvolvingPascalsTriangleRows.m
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[Kol22]

[Slo64]
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PolynomialIdentity[m, n] verifies

[0 AT

k=0 5=0

PolynomialIdentityl[m, n] verifies

CEEOE e

Polynomialldentity2[m, n] verifies

=23 (1) ()

k=0 7=0

Polynomialldentity3[m, n] verifies

e EEEer

k=0 7=0
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