POLYNOMIAL IDENTITIES INVOLVING PASCAL'S TRIANGLE ROWS

PETRO KOLOSOV

ABSTRACT. In this short report we consider the famous binomial identity

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

Based on it, the following binomial identities are derived

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k-j} m^{j},$$
$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{j} \binom{n-j}{k-j} (-1)^{k-j} m^{j},$$

where $\binom{n}{k}$ are binomial coefficients and (m, n) are non-negative integers.

Contents

1.	Introduction	1
2.	Conclusions	4
3.	Verification of the results	4
Re	ferences	5

1. INTRODUCTION

We start from the famous relation about row sums of the Pascal triangle, that is

$$2^n = \sum_{k=0}^n \binom{n}{k},\tag{1.1}$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ are binomial coefficients [GKPL89]. Identity (1.1) is straightforward because the Pascal's triangle is

Date: May 21, 2022.

²⁰¹⁰ Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Binomial coefficients, Binomial theorem, Pascal's triangle, Binomial sums, Binomial distribution, Binomial identities.

_

n/k	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	2	1						
3	1		3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70			8	1

Table 1. Pascal's triangle [CG96]. Each k-th term of n-th row is $\binom{n}{k} \cdot 1^k$. Sequence A007318 in OEIS [Slo64].

Consider a generating function such as $f_2(n,k) = \binom{n}{k} \cdot 2^k$. The function $f_2(n,k)$ generates the following Pascal-like triangle

n/k	0	1	2	3	4	5	6	7	8
0	1								
1	1	2							
2	1	4	4						
$\frac{-}{3}$	1	6	12	8					
	1	8	24	32	16				
5	1	10	40	80	80	32			
6	1	12	60	160	240	192	64		
7	1	14	84	280	560	672	448	128	
8	1	16	112	448	1120	1792	1792	1024	256

Table 2. Triangle generated by the function $\binom{n}{k} \cdot 2^k$. Can be reproduced using Mathematica function GeneratePascalLikeTriangle[2, 8] at [Kol22]. Sequence A013609 in OEIS [Slo64].

Now we can notice that

$$3^n = \sum_{k=0}^n \binom{n}{k} \cdot 2^k \tag{1.2}$$

Continue similarly we can generalize the equations (1.1), (1.2) as follows

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot 1^{k}$$

$$3^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot 2^{k}$$

$$4^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot 3^{k}$$

$$\dots$$

$$m^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot (m-1)^{k}$$

Obviously, it is simply a form of the Binomial theorem $(m+1)^n = \sum_{k=0}^n {n \choose k} m^k$. Therefore, we conclude this version of the Binomial theorem as

Theorem 1.1. (Binomial theorem.) The following identity involving polynomial m^n holds

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k-j} m^{j}$$
(1.3)

where (m, n) are non-negative integers.

Proof. Recall the induction over m, let be a base case m = 2, hereby

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} (2-1)^{k}$$
(1.4)

Reviewing an equation (1.4) we can see that

$$(\underbrace{2+1}_{m=3})^n = \sum_{k=0}^n \binom{n}{k} \cdot (\underbrace{(2-1)+1}_{m-1})^k \tag{1.5}$$

Continue similarly it is straightforward that $m^n = \sum_{k=0}^n \binom{n}{k} \cdot (m-1)^k$. However, we are able to expand the part $(m-1)^k$ by means of Binomial theorem [AS72], that is

$$(m-1)^{k} = \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} m^{j} = \sum_{j=0}^{k} \binom{k}{j} (-1)^{k} m^{k-j}$$

So that now we are able to merge both results $m^n = \sum_{k=0}^n \binom{n}{k} \cdot (m-1)^k$ and $(m-1)^k = \sum_{j=0}^k \binom{k}{j} (-1)^{k-j} m^j = \sum_{j=0}^k \binom{k}{j} (-1)^k m^{k-j}$ to receive

$$m^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot (m-1)^{k} = \sum_{k=0}^{n} \binom{n}{k} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} m^{j}$$
$$= \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k-j} m^{j}$$
$$= \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k} m^{k-j}$$

Theorem (1.1) may be verified using Mathematica command PolynomialIdentity[m, n] at [Kol22]. This completes the proof. \Box

Moreover, by means of the binomial identity [[Gro16], Chapter 4]

$$\binom{n}{k}\binom{k}{j} = \binom{n}{j}\binom{n-j}{k-j}$$

The polynomial m^n is identical to

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{j} \binom{n-j}{k-j} (-1)^{k-j} m^{j} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{j} \binom{n-j}{k-j} (-1)^{k} m^{k-j}$$

2. Conclusions

The following binomial identities are derived

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k-j} m^{j} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k} m^{k-j}$$
$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{j} \binom{n-j}{k-j} (-1)^{k-j} m^{j} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{j} \binom{n-j}{k-j} (-1)^{k} m^{k-j}$$

Moreover, above results are verified by means of specified Mathematica scripts available at github.com/kolosovpetro/PolynomialIdentitiesInvolvingPascalsTriangleRows.

3. Verification of the results

Main results of this paper may be verified using Mathematica scripts from [Kol22] as follows

• PolynomialIdentity[m, n] verifies

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k-j} m^{j}$$

• PolynomialIdentity1[m, n] verifies

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{j} \binom{n-j}{k-j} (-1)^{k-j} m^{j}$$

• PolynomialIdentity2[m, n] verifies

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k} m^{k-j}$$

• PolynomialIdentity3[m, n] verifies

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{j} \binom{n-j}{k-j} (-1)^{k} m^{k-j}$$

References

- [AS72] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington, DC, USA, tenth printing edition, 1972.
- [CG96] JH Conway and RK Guy. Pascal's triangle. The Book of Numbers. New York: Springer-Verlag, pages 68–70, 1996.
- [GKPL89] Ronald L Graham, Donald E Knuth, Oren Patashnik, and Stanley Liu. Concrete mathematics: a foundation for computer science. *Computers in Physics*, 3(5):160–162, 1989.
- [Gro16] Jonathan L Gross. Combinatorial methods with computer applications. CRC Press, 2016.
- [Kol22] Petro Kolosov. "Polynomial identities involving Pascal's triangle rows" electronically Source files. published https://github.com/kolosovpetro/ at PolynomialIdentitiesInvolvingPascalsTriangleRows, 2022.
- [Slo64] N. J. A. Sloane. The on-line encyclopedia of integer sequences. published electronically at https://oeis.org, 1964.

Email address: kolosovp94@gmail.com
URL: https://razumovsky.me/