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Abstract. Let Pm
b (x) be a 2m+ 1-degree integer-valued polynomial in b, x ∈ R

Pm
b (x) =

b−1∑
k=0

m∑
r=0

Am,rk
r(x− k)r,

where Am,r is a real coefficient. In this manuscript we establish a relation between Binomial

theorem and polynomial Pm
b (x). Furthermore, a relationship between Binomial theorem and

discrete convolution in terms of polynomials is provided.
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1. Definitions, notations and conventions

We now set the following notation, which remains fixed for the remainder of this paper:
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• Am,r, m ∈ N is a real coefficient defined recursively

Am,r :=


(2r + 1)

(
2r
r

)
, if r = m;

(2r + 1)
(
2r
r

)∑m
d=2r+1Am,d

(
d

2r+1

) (−1)d−1

d−r
B2d−2r, if 0 ≤ r < m;

0, if r < 0 or r > m,

(1.1)

where Bt are Bernoulli numbers [Wei]. It is assumed that B1 =
1
2
.

• Pm
b (x), m ∈ N is a 2m+ 1-degree integer-valued polynomial in b, x ∈ R

Pm
b (x) :=

b−1∑
k=0

m∑
r=0

Am,rk
r(x− k)r (1.2)

• Hm,t(b), m, t, b ∈ N is a polynomial defined as

Hm,t(b) :=
m∑
j=t

(
j

t

)
Am,j

(−1)j

2j − t+ 1

(
2j − t+ 1

b

)
B2j−t+1−b (1.3)

• Xm,t(j), m, t ∈ N is polynomial of degree 2m+ 1− t in j ∈ R

Xm,t(j) := (−1)m
2m+1−t∑

k=1

Hm,t(k) · jk (1.4)

• Lm(x, k), m ∈ N is 2m degree polynomial in x, k ∈ R

Lm(x, k) :=
m∑
r=0

Am,rk
r(x− k)r (1.5)

• (f ∗ f)[n] is discrete convolution [BDM11] of function f defined over set of integers Z

(f ∗ f)[n] =
∑
k

f(k)f(n− k)

2. Introduction and main results

The polynomial Pm
b (x), m ∈ N is 2m+ 1-degree integer-valued polynomial in x, b ∈ R.

Pm
b (x) =

b−1∑
k=0

m∑
r=0

Am,rk
r(x− k)r,

where Am,r is real coefficient. By means of Lemma 4.1, the polynomial Pm
b (x) has the

following relation with Binomial theorem [AS72]

Pm
x+y(x+ y) =

2m+1∑
r=0

(
2m+ 1

r

)
x2m+1−ryr.
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From the other hand, polynomial Pm
b (x) might be expressed in terms of discrete convolution

of polynomial nj, j ∈ N

Pm
x+1(x) =

m∑
r=0

Am,r(n
r ∗ nr)[x], n ≥ 0.

It is of first necessity to notice that nr of discrete convolution (nr ∗ nr)[x] evaluated at x is

implicit piecewise-defined polynomial such as

nr =


n · n · · ·n︸ ︷︷ ︸

r times

, if n ≥ 0

0, otherwise

Therefore, it is easy to notice the following identities in terms of Binomial theorem and

discrete convolution, see Corollaries 6.1, 6.2

m∑
r=0

Am,r(n
r ∗ nr)[x+ y] = 1 +

2m+1∑
r=0

(
2m+ 1

r

)
x2m+1−ryr, n ≥ 0,

m∑
r=0

Am,r(n
r ∗ nr)[x+ y] = −1 +

2m+1∑
r=0

(
2m+ 1

r

)
x2m+1−ryr, n > 0.

Also, the following generalizations for multinomial case are discussed, see Corollaries 6.3, 6.4

m∑
r=0

Am,r(n
r ∗ nr)[x1 + x2 + · · ·+ xt] = 1 +

∑
k1+k2+···+kt=2m+1

(
2m+ 1

k1, k2, . . . , kt

) t∏
ℓ=1

xkℓ
ℓ , n ≥ 0,

m∑
r=0

Am,r(n
r ∗ nr)[x1 + x2 + · · ·+ xt] = −1 +

∑
k1+k2+···+kt=2m+1

(
2m+ 1

k1, k2, . . . , kt

) t∏
ℓ=1

xkℓ
ℓ , n > 0.

A few polynomial identities are straightforward as well by means of Theorems 5.3, 5.5.

Precisely, by the theorem 5.3 we have an odd-power identity as follows

x2m+1 =
m∑
r=0

Am,r

x−1∑
k=0

kr(x− k)r

From the other prospective, the theorem 5.5 concludes as follows

x2m+1 =
m∑
r=0

Am,r

x∑
k=1

kr(x− k)r
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In its explicit form an identity x2m+1 =
∑m

r=0 Am,r

∑x−1
k=0 k

r(x− k)r looks like as follows

x3 =
x∑

k=1

6k(x− k) + 1

x5 =
x∑

k=1

30k2(x− k)2 + 1

x7 =
x∑

k=1

140k3(x− k)3 − 14k(x− k) + 1

x9 =
x∑

k=1

630k4(x− k)4 − 120k(x− k) + 1

x11 =
x∑

k=1

2772k5(x− k)5 + 660k2(x− k)2 − 1386k(x− k) + 1

x13 =
x∑

k=1

51480k7(x− k)7 − 60060k3(x− k)3 + 491400k2(x− k)2 − 450054k(x− k) + 1

3. Polynomial Pm
b (x) and its properties

We continue our mathematical journey from short overview of polynomial Lm(x, k) that

is essential part of polynomial Pm
b (x) since that Pm

b (x) =
∑b−1

k=0 Lm(x, k). Polynomial

Lm(x, k), m ∈ N is polynomial of degree 2m in x, k ∈ R, see definition (1.5). In explicit

form the polynomial Lm(x, k) is as follows

Lm(x, k) = Am,mk
m(x− k)m +Am,m−1k

m−1(x− k)m−1 + · · ·+Am,0,

where Am,r are real coefficients defined by (1.1). Coefficients Am,r are nonzero only for r

within the interval r ∈ {m} ∪
[
0, m−1

2

]
. For example,

m/r 0 1 2 3 4 5 6 7

0 1
1 1 6
2 1 0 30
3 1 -14 0 140
4 1 -120 0 0 630
5 1 -1386 660 0 0 2772
6 1 -21840 18018 0 0 0 12012
7 1 -450054 491400 -60060 0 0 0 51480

Table 1. Coefficients Am,r. See the OEIS entries: A302971, A304042.

https://oeis.org/A302971
https://oeis.org/A304042
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Thus, the polynomial Lm(x, k) may also be written as

Lm(x, k) = Am,mk
m(x− k)m +

m−1
2∑

r=0

Am,rk
r(x− k)r

For example, the polynomials Lm(x, k) for 0 ≤ m ≤ 3 are

L0(x, k) = 1,

L1(x, k) = 6k(x− k) + 1 = −6k2 + 6kx+ 1,

L2(x, k) = 30k2(x− k)2 + 1 = 30k4 − 60k3x+ 30k2x2 + 1,

L3(x, k) = 140k3(x− k)3 − 14k(x− k) + 1

= −140k6 + 420k5x− 420k4x2 + 140k3x3 + 14k2 − 14kx+ 1

It is worth to notice that Lm(x, k) is symmetrical over x

Property 3.1. For every x, k ∈ R

Lm(x, k) = Lm(x, x− k)

This might be seen in the following table

x/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 7 1
3 1 13 13 1
4 1 19 25 19 1
5 1 25 37 37 25 1
6 1 31 49 55 49 31 1
7 1 37 61 73 73 61 37 1

Table 2. Values of L1(x, k). See the OEIS entry: A287326.

Next we discuss the polynomial Pm
b (x). In its extended form, the polynomial Pm

b (x) is

Pm
b (x) =

b−1∑
k=0

Lm(x, k) =
b−1∑
k=0

m∑
r=0

Am,rk
r(x− k)r =

m∑
r=0

Am,r

b−1∑
k=0

kr(x− k)r

https://oeis.org/A287326
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By the binomial theorem (x− y)n =
∑n

k=0(−1)k
(
n
k

)
xn−kyk,

Pm
b (x) =

m∑
r=0

Am,r

b−1∑
k=0

kr

r∑
j=0

(−1)j
(
r

j

)
xr−jkj

=
m∑
r=0

Am,r

b−1∑
k=0

r∑
j=0

(−1)j
(
r

j

)
xr−jkr+j

=
m∑
r=0

Am,r

r∑
j=0

(−1)jxr−j

(
r

j

) b−1∑
k=0

kr+j

However, by the symmetry (3.1) of Lm(x, k) the polynomial Pm
b (x) may also be written in

the form

Pm
b (x) =

b∑
k=1

m∑
r=0

Am,rk
r(x− k)r =

b∑
k=1

m∑
r=0

Am,rk
r

r∑
t=0

(−1)r−txt

(
r

t

)
kr−t

=
m∑
t=0

xt

b∑
k=1

m∑
r=t

(−1)r−t

(
r

t

)
Am,rk

2r−t

︸ ︷︷ ︸
(−1)m−tXm,t(b)

Note that
∑b

k=1

∑m
r=t(−1)r−t

(
r
t

)
Am,rk

2r−t is the (−1)m−tXm,t(b). From this formula it

may be not immediately clear why Xm,t(b) represent polynomials in b. However, this

can be seen if we change the summation order and use Faulhaber’s formula
∑n

k=1 k
p =

1
p+1

∑p
j=0

(
p+1
j

)
Bjn

p+1−j to obtain

Xm,t(b) = (−1)m
m∑
r=t

(
r

t

)
Am,r

(−1)r

2r − t+ 1

2r−t∑
ℓ=0

(
2r − t+ 1

ℓ

)
Bℓb

2r−t+1−ℓ

Introducing k = 2r − t+ 1− ℓ we further get the formula

Xm,t(b) = (−1)m
2m−t+1∑

k=1

bk
m∑
r=t

(
r

t

)
Am,r

(−1)r

2r − t+ 1

(
2r − t+ 1

k

)
B2r−t+1−k︸ ︷︷ ︸

Hm,t(k)

Polynomials X3,t(b), 0 ≤ t ≤ 3 are

X3,0(j) = 7b2 − 28b3 + 70b5 − 70b6 + 20b7,

X3,1(j) = 7b− 42b2 + 175b4 − 210b5 + 70b6,

X3,2(j) = −14b+ 140b3 − 210b4 + 84b5,

X3,3(j) = 35b2 − 70b3 + 35b4
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Polynomials H3,t(k) are defined by (1.3) and examples for m = 3, 0 ≤ t ≤ 3 are

H3,0(k) = B1−k

(
1

k

)
+

14

3
B3−k

(
3

k

)
− 20B7−k

(
7

k

)
,

H3,1(k) = 7B2−k

(
2

k

)
− 70B6−k

(
6

k

)
,

H3,2(k) = −84B5−k

(
5

k

)
,

H3,3(k) = −35B4−k

(
4

k

)
It gives us an opportunity to overview the polynomial Pm

b (x) from the different prospective,

for instance

Pm
b (x) =

m∑
r=0

(−1)m−rXm,r(b) · xr =
m∑
r=0

2m−r+1∑
ℓ=1

(−1)2m−rHm,r(ℓ) · bℓ · xr (3.1)

Equation (3.1) clearly states why Pm
b (x) is polynomial in x, b. For example,

P0
b(x) = b,

P1
b(x) = 3b2 − 2b3 − 3bx+ 3b2x,

P2
b(x) = 10b3 − 15b4 + 6b5

− 15b2x+ 30b3x− 15b4x

+ 5bx2 − 15b2x2 + 10b3x2,

P3
b(x) = −7b2 + 28b3 − 70b5 + 70b6 − 20b7

+ 7bx− 42b2x+ 175b4x− 210b5x+ 70b6x

+ 14bx2 − 140b3x2 + 210b4x2 − 84b5x2

+ 35b2x3 − 70b3x3 + 35b4x3

The following property also holds for Pm
b (x)

Property 3.2. For every m ∈ N, x, b ∈ R

Pm
b+1(x) = Pm

b (x) + Lm(x, b)

4. Polynomial Pm
b (x) in terms of Binomial theorem

Lemma 4.1. For every m ∈ N, x, y ∈ R

Pm
x+y(x+ y) =

2m+1∑
r=0

(
2m+ 1

r

)
x2m+1−ryr
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By Lemma 4.1 and equation (3.1) the following polynomial identities straightforward

x2m+1 =
m∑
r=0

2m−r+1∑
ℓ=1

(−1)2m−rHm,r(ℓ) · xℓ+r =
m∑
r=0

(−1)m−rXm,r(x) · xr

For instance,

P2
x+y(x+ y) = (x+ y)(x4 + 4x3y + 6x2y2 + 4xy3 + y4).

In addition, the following identities hold

(x+ y)2m+1 =
m∑
r=0

2m−r+1∑
ℓ=1

(−1)2m−rHm,r(ℓ) · (x+ y)ℓ+r

=
m∑
r=0

(−1)m−rXm,r(x+ y) · (x+ y)r

Obviously, Multinomial expansion of t-fold sum (x1 + x2 + · · · + xt)
2m+1 can be reached by

Pm
b (x1 + x2 + · · ·+ xt) as well

Corollary 4.2. For all x1, x2, . . . , xt ∈ R, m ∈ N

Pm
x1+x2+···+xt

(x1 + x2 + · · ·+ xt) =
∑

k1+k2+···+kt=2m+1

(
2m+ 1

k1, k2, . . . , kt

) t∏
s=1

xks
t

Moreover, the following multinomial identities hold

(x1 + x2 + · · ·+ xt)
2m+1 =

m∑
r=0

2m−r+1∑
ℓ=1

(−1)2m−rHm,r(ℓ) · (x1 + x2 + · · ·+ xt)
ℓ+r

=
m∑
r=0

(−1)m−rXm,r(x1 + x2 + · · ·+ xt) · (x1 + x2 + · · ·+ xt)
r

5. Polynomial Pm
b (x) in terms of Discrete convolution

In this section we discuss the relation between Pm
b (x) and discrete convolution of polyno-

mials. To show that Pm
b (x) involves the discrete convolution of polynomial nr let’s remind

the definition of Pm
b (x)

Pm
b (x) =

b−1∑
k=0

m∑
r=0

Am,rk
r(x− k)r =

m∑
r=0

Am,r

b−1∑
k=0

kr(x− k)r

A discrete convolution of defined over set of integers Z function f is

(f ∗ f)[n] =
∑
k

f(k)f(n− k)
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General formula of discrete convolution for polynomials f(n) = nj, n ≥ a ∈ R may be

derived immediately

(nj ∗ nj)[x] =
∑
k

kj(x− k)j[k ≥ a][x− k ≥ a]

=
∑
k

kj(x− k)j[k ≥ a][k ≤ x− a]

=
∑
k

kj(x− k)j[a ≤ k ≤ x− a]

=
x−a∑
k=a

kj(x− k)j,

where [a ≤ k ≤ x− a] is Iverson’s bracket [Ive62].

Lemma 5.1. For every n ∈ N, x ∈ R

(nr ∗ nr)[x] =
x∑

k=0

kr(x− k)r, n ≥ 0.

It is of first importance to keep in mind that nr of discrete convolution (nr∗nr)[x] evaluated

at x is implicit piecewise-defined polynomial such as

nr =


n · n · · ·n︸ ︷︷ ︸

r times

, if n ≥ 0

0, otherwise

Thus, the corollary follows

Corollary 5.2. By Lemma 5.1 the polynomial Pm
b (n) might be expressed in terms of discrete

convolution as follows

Pm
x+1(x) =

m∑
r=0

Am,r(n
r ∗ nr)[x], n ≥ 0.

Therefore, another polynomial identity follows

Theorem 5.3. By Lemma 4.1, Corollary 5.2 and property 3.2, for every m ∈ N, x ∈ R

1 + x2m+1 =
m∑
r=0

Am,r(n
r ∗ nr)[x], n ≥ 0.

Now we notice the following identity in terms of polynomialPm
b (x) and discrete convolution

(nj ∗ nj)[x]
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Proposition 5.4. For every m ∈ N, x ∈ R

Pm
x (x) =

m∑
r=0

Am,r

(
0rxr +

x−1∑
k=1

kr(x− k)r

)

=
m∑
r=0

Am,r0
rxr +

m∑
r=0

Am,r(n
r ∗ nr)[x]

= 1 +
m∑
r=0

Am,r(n
r ∗ nr)[x], n ≥ 1.

Since that for all r in Am,r0
rxr we have

Am,r0
rxr =

1, if r = 0

0, if r > 0

Above is true because Am,0 = 1 for every m ∈ N, and x0 = 1 for every x, [GKP94]. Hence,

the following identity between Pm
b (x) and discrete convolution (nj ∗ nj)[x] holds

Theorem 5.5. By Lemma 4.1 and Proposition 5.4, for every m ∈ N, x ∈ R

−1 + x2m+1 =
m∑
r=0

Am,r(n
r ∗ nr)[x], n > 0.

Corollary 5.6. By Theorem 5.5, for all m ∈ N
m∑
r=0

Am,r = 22m+1 − 1

Corollary 5.6 holds since that convolution (nj ∗ nj)[x] = 1, n > 0 for each r and x = 2.

6. Relation between Binomial theorem and Discrete convolution

Corollary 6.1. (Generalization of Theorem 5.3 for Binomials.) For every m ∈ N, x, y ∈ R
m∑
r=0

Am,r(n
r ∗ nr)[x+ y] = 1 +

2m+1∑
r=0

(
2m+ 1

r

)
x2m+1−ryr, n ≥ 0.
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For example, given m = 0, 1, 2 the Corollary 6.1 gives

0∑
r=0

A0,r(n
r ∗ nr)[x+ y] = 1 + x+ y

1∑
r=0

A1,r(n
r ∗ nr)[x+ y] = 1 + x+ y − (x+ y)(1 + x+ y)(1− 3x− 3y + 2(x+ y))

= 1 + x3 + 3x2y + 3xy2 + y3

2∑
r=0

A2,r(n
r ∗ nr)[x+ y] = 1 + x+ y + (x+ y)(1 + x+ y)

(
−1 + x+ 5x2 + y + 10xy + 5y2

− 15x(x+ y) + 10x2(x+ y)− 15y(x+ y) + 20xy(x+ y)

+ 10y2(x+ y) + 9(x+ y)2 − 15x(x+ y)2

−15y(x+ y)2 + 6(x+ y)3
)

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 + 1

Above example could be verified using using the commands

• BinomialTheoremAndDiscreteConvolutionTest[0, x + y]

• BinomialTheoremAndDiscreteConvolutionTest[1, x + y]

• Expand[BinomialTheoremAndDiscreteConvolutionTest[1, x + y]]

• BinomialTheoremAndDiscreteConvolutionTest[2, x + y]

• Expand[BinomialTheoremAndDiscreteConvolutionTest[2, x + y]]

defined in Mathematica package at [Kol22].

Corollary 6.2. (Generalization of Theorem 5.5 for Binomials.) For every m ∈ N, x, y ∈ R
m∑
r=0

Am,r(n
r ∗ nr)[x+ y] = −1 +

2m+1∑
r=0

(
2m+ 1

r

)
x2m+1−ryr, n > 0.

For example, given m = 0, 1 the Corollary 6.2 gives

0∑
r=0

A0,r(n
r ∗ nr)[x+ y] = x+ y − 1

1∑
r=0

A1,r(n
r ∗ nr)[x+ y] = −1 + x+ y − (−1 + x+ y)(x+ y)(−1− 3x− 3y + 2(x+ y))

= x3 + 3x2y + 3xy2 + y3 − 1

Above example could be verified using using the commands

• BinomialTheoremAndDiscreteConvolutionStrictTest[0, x + y]

• BinomialTheoremAndDiscreteConvolutionStrictTest[1, x + y]

• Expand[BinomialTheoremAndDiscreteConvolutionStrictTest[1, x + y]]
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defined in Mathematica package at [Kol22]. From the other prospective, let be a function

fr(t, k) = (t− k)r, t ≥ k, then following identity holds

(x− 2a)2m+1 + 1 =
m∑
r=0

Am,r(fr(t, k) ∗ fr(t, k))[x] (6.1)

Let be a function gr(t, k) = (t− k)r, t > k, then

(x− 2a)2m+1 − 1 =
m∑
r=0

Am,r(gr(t, k) ∗ gr(t, k))[x] (6.2)

6.1. Generalization for Multinomials. In this subsection we generalize Theorems 5.3, 5.5

for multinomial cases.

Corollary 6.3. (Generalization of Theorem 5.3 for Multinomials.) For every x1, x2, . . . , xt ∈
R, m ∈ N, n ≥ 1 ∈ N

m∑
r=0

Am,r(n
r ∗ nr)[x1 + x2 + · · ·+ xt] = 1 +

∑
k1+k2+···+kt=2m+1

(
2m+ 1

k1, k2, . . . , kt

) t∏
ℓ=1

xkℓ
ℓ

For instance, given m = 1 the Corollary 6.3 gives

1∑
r=0

A1,r(n
r ∗ nr)[x+ y + z]

= 1 + x+ y + z − (x+ y + z)(1 + x+ y + z)(1− 3x− 3y − 3z + 2(x+ y + z))

= 1 + x3 + 3x2y + 3xy2 + y3 + 3x2z + 6xyz + 3y2z + 3xz2 + 3yz2 + z3.

Above example could be verified using using the commands

• BinomialTheoremAndDiscreteConvolutionTest[1, x + y + z]

• Expand[BinomialTheoremAndDiscreteConvolutionTest[1, x + y + z]]

defined in Mathematica package at [Kol22].

Corollary 6.4. (Generalization of Theorem 5.5 for Multinomials.) For each x1+x2+ · · ·+
xt ≥ 1, x1, x2, . . . , xt ∈ R, m ∈ N, n ≥ 1 ∈ N

m∑
r=0

Am,r(n
r ∗ nr)[x1 + x2 + · · ·+ xt] = −1 +

∑
k1+k2+···+kt=2m+1

(
2m+ 1

k1, k2, . . . , kt

) t∏
ℓ=1

xkℓ
ℓ

For example, given m = 1 the Corollary 6.4 gives

1∑
r=0

A1,r(n
r ∗ nr)[x+ y + z]

= −1 + x+ y + z − (−1 + x+ y + z)(x+ y + z)(−1− 3x− 3y − 3z + 2(x+ y + z))

= −1 + x3 + 3x2y + 3xy2 + y3 + 3x2z + 6xyz + 3y2z + 3xz2 + 3yz2 + z3.
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Above example could be verified using using the commands

• BinomialTheoremAndDiscreteConvolutionStrictTest[1, x + y + z]

• Expand[BinomialTheoremAndDiscreteConvolutionStrictTest[1, x + y + z]]

defined in Mathematica package at [Kol22].

7. Derivation of coefficient Am,r

By Lemma 4.1 for every m ∈ N, n ∈ R

n2m+1 =
m∑
r=0

Am,r

n−1∑
k=0

kr(n− k)r (7.1)

The Am,r might be evaluated using binomial expansion of
∑n−1

k=0 k
r(n− k)r

n−1∑
k=0

kr(n− k)r =
n−1∑
k=0

kr

r∑
j=0

(−1)j
(
r

j

)
nr−jkj =

r∑
j=0

(−1)j
(
r

j

)
nr−j

n−1∑
k=0

kr+j

Using Faulhaber’s formula
∑n

k=1 k
p = 1

p+1

∑p
j=0

(
p+1
j

)
Bjn

p+1−j we get

n−1∑
k=0

kr(n− k)r =
r∑

j=0

(
r

j

)
nr−j (−1)j

r + j + 1

[∑
s

(
r + j + 1

s

)
Bsn

r+j+1−s −Br+j+1

]

=
∑
j,s

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)
Bsn

2r+1−s −
∑
j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

=
∑
s

∑
j

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)
︸ ︷︷ ︸

S(r)

Bsn
2r+1−s

−
∑
j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

(7.2)

where Bs are Bernoulli numbers and B1 =
1
2
. Now, we notice that

∑
j

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)
=


1

(2r+1)(2rr )
, if s = 0;

(−1)r

s

(
r

2r−s+1

)
, if s > 0.
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In particular, the last sum is zero for 0 < s ≤ r. Therefore, expression (7.2) takes the form

n−1∑
k=0

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +
∑
s≥1

(−1)r

s

(
r

2r − s+ 1

)
Bsn

2r+1−s

︸ ︷︷ ︸
(⋆)

−
∑
j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

︸ ︷︷ ︸
(⋄)

Hence, introducing ℓ = 2r + 1− s to (⋆) and ℓ = r − j to (⋄), we get

n−1∑
k=0

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +
∑
ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

−
∑
ℓ

(
r

ℓ

)
(−1)j−ℓ

2r + 1− ℓ
B2r+1−ℓn

ℓ

n−1∑
k=0

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 + (−1)r
∑
ℓ

1

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

− 1

(−1)r

∑
ℓ

(
r

ℓ

)
(−1)j−ℓ

2r + 1− ℓ
B2r+1−ℓn

ℓ

=
1

(2r + 1)
(
2r
r

)n2r+1 + 2
r∑

odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

Using the definition (7.1) of Am,r, we obtain the following identity for polynomials in n

m∑
r=0

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 + 2
m∑
r=0

r∑
odd ℓ

Am,r
(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ ≡ n2m+1 (7.3)

Taking the coefficient of n2r+1 for r = m in (7.3) we get Am,m = (2m + 1)
(
2m
m

)
. Since

that odd ℓ ≤ r in explicit form is 2j + 1 ≤ r, it follows that j ≤ m−1
2

, where j is iterator.

Therefore, taking the coefficient of n2j+1 for an integer j in the range m
2
≤ j ≤ m, we get

Am,j = 0. Taking the coefficient of n2d+1 for d in the range m/4 ≤ d < m/2 we get

Am,d
1

(2d+ 1)
(
2d
d

) + 2(2m+ 1)

(
2m

m

)(
m

2d+ 1

)
(−1)m

2m− 2d
B2m−2d = 0,

i.e

Am,d = (−1)m−1 (2m+ 1)!

d!d!m!(m− 2d− 1)!

1

m− d
B2m−2d
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Continue similarly we can express Am,r for each integer r in range m/2s+1 ≤ r < m/2s

(iterating consecutively s = 1, 2, . . .) via previously determined values of Am,d as follows

Am,r = (2r + 1)

(
2r

r

) m∑
d=2r+1

Am,d

(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

8. Verification of the results and examples

To fulfill our study we provide an opportunity to verify its results by means of Wolfram

Mathematica language.

8.1. Mathematica commands. Proceeding to the repository [Kol22] reader is able to find

there a folder named mathematica that contains the files

• OnTheBinomialTheoremAndDiscreteConvolution.m is a package file with definitions

• OnTheBinomialTheoremAndDiscreteConvolution.nb is a notebook file with exam-

ples.

The following commands may be used to reproduce the results of this manuscript:

• A[m, r] returns the real coefficient Am,r defined by (1.1).

• PrintTriangleOfA[rows] prints the table of coefficients Am,r.

Command PrintTriangleOfA[7] reproduces the table (1).

• PolynomialL[m, n, k] returns the polynomial Lm(n, k) defined by (1.5).

• PolynomialP[m, x, b] returns the polynomial Pm
b (x) defined by (1.2).

• Expand[PolynomialP[m, x + y, x + y]] verifies the Lemma 4.1.

• PolynomialH[m, t, j] returns the polynomial Hm,t(j) defined by (1.3).

• PolynomialX[m, t, k] returns the polynomial Xm,t(k) defined by (1.4).

• Expand[BinomialTheoremAndDiscreteConvolutionTest[m, x + y]] verifies the

Corollary 6.1.

• Expand[BinomialTheoremAndDiscreteConvolutionStrictTest[m, x + y]] veri-

fies the Corollary 6.2.

• DiscreteConvolutionPowerIdentityParametricTest[m, x, a] verifies an equa-

tion (6.1). Usage Column[Table[DiscreteConvolutionPowerIdentityParametricTest[1,

x, 1], x, 3, 20], Left].

• DiscreteConvolutionPowerIdentityStrictParametricTest[m, x, a] verifies an

equation (6.2). Usage Column[Table[DiscreteConvolutionPowerIdentityStrictParametricTest[1,

x, 1], x, 3, 20], Left].

• Expand[PolynomialIdentityOfP[1, n, b]] validates an identity

Pm
b (x) =

m∑
r=0

Am,r

r∑
j=0

(−1)jxr−j

(
r

j

) b−1∑
k=0

kr+j
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• PolynomialIdentityInvolvingX[m, x, b] validates an identity (3.1)

Pm
b (x) =

m∑
r=0

(−1)m−rXm,r(b) · xr

• PolynomialIdentityInvolvingH[m, n, b] validates an identity (3.1).

Pm
b (x) =

m∑
r=0

2m−r+1∑
ℓ=1

(−1)2m−rHm,r(ℓ) · bℓ · xr

8.2. Examples. For example, given m = 1 we have the following values of L1(x, k)

x/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 7 1
3 1 13 13 1
4 1 19 25 19 1
5 1 25 37 37 25 1
6 1 31 49 55 49 31 1
7 1 37 61 73 73 61 37 1

Table 3. Values of L1(x, k). See OEIS entry: A300656.

Table 3 can be reproduced using Mathematica command

PrintTriangleOfPolynomialL[1, 7]

defined in the [Kol22]. From Table 3 it is seen that

P1
0(0) = 0 = 03

P1
1(1) = 1 = 13

P1
2(2) = 1 + 7 = 23

P1
3(3) = 1 + 13 + 13 = 33

P1
4(4) = 1 + 19 + 25 + 19 = 43

P1
5(5) = 1 + 25 + 37 + 37 + 25 = 53

Another case, given m = 2 we have the following values of L2(x, k)

https://oeis.org/A300656
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x/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 31 1
3 1 121 121 1
4 1 271 481 271 1
5 1 481 1081 1081 481 1
6 1 751 1921 2431 1921 751 1
7 1 1081 3001 4321 4321 3001 1081 1

Table 4. Values of L2(x, k). See OEIS entry: A300656.

Table 4 can be reproduced using Mathematica command

PrintTriangleOfPolynomialL[2, 7]

defined in the [Kol22]. Again, an odd-power identity 4.1 holds

P2
0(0) = 0 = 05

P2
1(1) = 1 = 15

P2
2(2) = 1 + 31 = 25

P2
3(3) = 1 + 121 + 121 = 35

P2
4(4) = 1 + 271 + 481 + 271 = 45

P2
5(5) = 1 + 481 + 1081 + 1081 + 481 = 55
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10. Conclusion

In this manuscript we have shown that Binomial theorem is partial case of polynomial

Pm
b (x). Furthermore, by means of Pm

b (x) it is shown a relation between Binomial theorem

and discrete convolution of polynomials.
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