ODD-POWER IDENTITY VIA MULTIPLICATION OF CERTAIN MATRICES

PETRO KOLOSOV

Abstract. This manuscript establishes an odd-power identity expressed through matrix multiplication. Specifically, we demonstrate that a 1×1 matrix with an entry $a_{1,1}=N^{2M+1}$ can be represented as the product of three matrices: \mathbf{J}_N , $\mathbf{K}_{N,M}$, and \mathbf{T}_M , as follows

$$
\left[N^{2M+1}\right] = \mathbf{J}_N \times \mathbf{K}_{N,M} \times \mathbf{T}_M
$$

Here, \mathbf{J}_N denotes a unit row vector of dimension $1 \times N$, $\mathbf{K}_{N,M}$ is an $N \times M$ matrix, and \mathbf{T}_M represents a column vector of dimension $M \times 1$.

CONTENTS

Sources: <https://github.com/kolosovpetro/OddPowerIdentityViaMultiplicationOfCertainMatrices>

Date: December 8, 2024.

²⁰¹⁰ Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Odd-power identity, Matrix multiplication, Unit vector, Column verctor, Bino-

mial theorem, Binomial coefficients, Faulhaber's formula, Polynomials, Polynomial identities .

DEFINITIONS

• J_N – unit row vector of all 1's having the dimension $1 \times N$. For example,

$$
\mathbf{J}_5 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}
$$

 $\bullet \ \textbf{K}_{N,M}$ – matrix of dimension $N \times M$ defined by

$$
\mathbf{K}_{N,M} = (k^r (N-k)^r)_{0 \le k \le N, 0 \le r \le M}
$$

For example, given $N = 4$

$$
\mathbf{K}_{4,M} = \begin{bmatrix} 0^0(4-0)^0 & 0^1(4-0)^1 & 0^2(4-0)^2 & \cdots & 0^M(4-0)^M \\ 1^0(4-1)^0 & 1^1(4-1)^1 & 1^2(4-1)^2 & \cdots & 1^M(4-1)^M \\ 2^0(4-2)^0 & 2^1(4-2)^1 & 2^2(4-2)^2 & \cdots & 2^M(4-2)^M \\ 3^0(4-3)^0 & 3^1(4-3)^1 & 3^2(4-3)^2 & \cdots & 3^M(4-3)^M \\ 4^0(4-4)^0 & 4^1(4-4)^1 & 4^2(4-4)^2 & \cdots & 4^M(4-4)^M \end{bmatrix}
$$

• \mathbf{T}_M – column vector of dimension $M \times 1$ defined by

$$
\mathbf{T}_M=(\mathbf{A}_{M,r})_{M=\mathrm{const},\,0\leq r\leq M}
$$

where $\mathbf{A}_{M,r}$ is a real coefficient [\[1,](#page-3-2) [2,](#page-3-3) [3,](#page-3-4) [4\]](#page-3-5). For example, given $M = 3$

$$
\mathbf{T}_3 = \begin{bmatrix} 1 \\ -14 \\ 0 \\ 140 \end{bmatrix}
$$

1. Introduction and main results

Let be a definition of the coefficient $\mathbf{A}_{m,r}$.

Definition 1.1. (Definition of coefficient $A_{m,r}$.)

$$
\mathbf{A}_{m,r} = \begin{cases} (2r+1)\binom{2r}{r} & \text{if } r=m\\ (2r+1)\binom{2r}{r} \sum_{d\geq 2r+1}^{m} \mathbf{A}_{m,d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r} & \text{if } 0 \leq r < m\\ 0 & \text{if } r < 0 \text{ or } r > m \end{cases} \tag{1.1}
$$

Let be a theorem that states the odd-power identity

Theorem 1.2. For every $n \geq 1$, $n, m \in \mathbb{N}$ there are $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \ldots, \mathbf{A}_{m,m}$, such that

$$
n^{2m+1} = \sum_{k=1}^{n} \sum_{r=0}^{m} \mathbf{A}_{m,r} k^r (n-k)^r
$$

where $\mathbf{A}_{m,r}$ is a real coefficient defined recursively by [\(1.1\)](#page-2-1).

Proof. The proof is given in $[1, 2]$ $[1, 2]$ $[1, 2]$.

Therefore, the claim that a 1×1 matrix with an entry $a_{1,1} = N^{2M+1}$ can be represented as the product of three matrices: \mathbf{J}_N , $\mathbf{K}_{N,M}$, and \mathbf{T}_M is essentially the odd-power identity [\(1.2\)](#page-2-2) expressed through matrix multiplication.

Theorem 1.3. For every integers N, M

$$
\left[N^{2M+1}\right] = \mathbf{J}_N \times \mathbf{K}_{N,M} \times \mathbf{T}_M
$$

2. Examples

$$
4^{2\cdot 3+1} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3^0 & 3^1 & 3^2 & 3^3 \\ 4^0 & 4^1 & 4^2 & 4^3 \\ 3^0 & 3^1 & 3^2 & 3^3 \\ 0^0 & 0^1 & 0^2 & 0^3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -14 \\ 0 \\ 140 \end{bmatrix}
$$

$$
4^{2\cdot 4+1} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4^0 & 4^1 & 4^2 & 4^3 & 4^4 \\ 6^0 & 6^1 & 6^2 & 6^3 & 6^4 \\ 6^0 & 6^1 & 6^2 & 6^3 & 6^4 \\ 4^0 & 4^1 & 4^2 & 4^3 & 4^4 \\ 0^0 & 0^1 & 0^2 & 0^3 & 0^4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -120 \\ 0 \\ 0 \\ 630 \end{bmatrix}
$$

3. Conclusions

In this manuscript we have successfully established an odd-power identity expressed through matrix multiplication. Specifically, we demonstrate that a 1×1 matrix with an entry $a_{1,1} = N^{2M+1}$ can be represented as the product of three matrices: \mathbf{J}_N , $\mathbf{K}_{N,M}$, and \mathbf{T}_M , as follows

$$
\left[N^{2M+1}\right]=\mathbf{J}_N\times\mathbf{K}_{N,M}\times\mathbf{T}_M
$$

Here, \mathbf{J}_N denotes a unit row vector of dimension $1 \times N$, $\mathbf{K}_{N,M}$ is an $N \times M$ matrix, and \mathbf{T}_M represents a column vector of dimension $M \times 1$.

REFERENCES

- [1] Kolosov, Petro. On the link between binomial theorem and discrete convolution. arXiv preprint arXiv:1603.02468, 2016. <https://arxiv.org/abs/1603.02468>.
- [2] Kolosov, Petro. 106.37 An unusual identity for odd-powers. The Mathematical Gazette, 106(567):509–513, 2022. <https://doi.org/10.1017/mag.2022.129>.
- [3] Petro Kolosov. Entry A302971 in The On-Line Encyclopedia of Integer Sequences. Published electronically at <https://oeis.org/A302971>, 2018.
- [4] Petro Kolosov. Entry A304042 in The On-Line Encyclopedia of Integer Sequences. Published electronically at <https://oeis.org/A304042>, 2018.

Version: 1.0.3-tags-v1-0-2.1+tags/v1.0.2.1f669a4

Software Developer, DevOps Engineer Email address: kolosovp94@gmail.com URL: https://kolosovpetro.github.io