
NEWTON’S INTERPOLATION FORMULA AND SUMS OF POWERS

PETRO KOLOSOV

Abstract. In this manuscript we derive formulas for multifold sums of powers by utilizing

Newton’s interpolation formula. Furthermore, we provide formulas for multifold sums of

powers in terms of Stirling numbers of the second kind and Eulerian numbers.
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1. Introduction and main results

In this manuscript we derive formulas for multifold sums of powers by utilizing Newton’s

interpolation formula. Furthermore, we provide formulas for multifold sums of powers in

terms of Stirling numbers of the second kind and Eulerian numbers.

The idea to derive sums of powers using difference operator and Newton’s series is quite

generic, thus, formulas for sums of powers using backward and central differences can be

found in the works [1, 2].

Allow us to start from the definition of multifold sums of powers. We utilize the recurrence

proposed by Donald Knuth in his article Johann Faulhaber and sums of powers, see [3]

Σ0 nm = nm

Σ1 nm = Σ0 1m + Σ0 2m + · · ·+ Σ0 nm

Σr+1 nm = Σr 1m + Σr 2m + · · ·+ Σr nm

Throughout the paper, we utilize the Newton’s interpolation formula as stated below

Proposition 1.1. (Newton’s interpolation formula [4, Lemma V].)

f(x) =
∞∑
j=0

(
x− a

j

)
∆jf(a)

where ∆kf(a) =
∑k

j=0(−1)k−j
(
k
j

)
f(a+j) are k-degree forward finite differences of f evaluated

in point a.

Which is indeed true, because

n3 = 0

(
n

0

)
+ 1

(
n

1

)
+ 6

(
n

2

)
+ 6

(
n

3

)
n3 = 1

(
n− 1

0

)
+ 7

(
n− 1

1

)
+ 12

(
n− 1

2

)
+ 6

(
n− 1

3

)
n3 = 8

(
n− 2

0

)
+ 19

(
n− 2

1

)
+ 18

(
n− 2

2

)
+ 6

(
n− 2

3

)
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Proposition 1.2 (Newton’s series for power). For non-negative integers m,n and an arbi-

trary integer t

nm =
m∑
k=0

(
n− t

k

)
∆ktm

Thus, for an arbitrary integer t, the ordinary sum of powers is

Σ1 nm =
n∑

k=1

m∑
j=0

(
−t+ k

j

)
∆jtm =

m∑
j=0

∆jtm
n∑

k=1

(
−t+ k

j

)
Proposition 1.3 (Segmented Hockey stick identity). For integers n, t and j

n∑
k=0

(
−t+ k

j

)
= (−1)j

(
j + t

j + 1

)
+

(
n− t+ 1

j + 1

)
Hence,

n∑
k=1

(
−t+ k

j

)
= (−1)j

(
j + t

j + 1

)
+

(
n− t+ 1

j + 1

)
−
(
−t

j

)

= (−1)j
(
j + t

j + 1

)
− (−1)j

(
j + t− 1

j

)
+

(
n− t+ 1

j + 1

)
= (−1)j

(
j + t− 1

j + 1

)
+

(
n− t+ 1

j + 1

)
because

(−t
j

)
= (−1)j

(
j+t−1

j

)
and by recurrence

(
t+1
k

)
=
(
t
k

)
+
(

t
k+1

)
.

This implies formula for sums of powers

Proposition 1.4 (Ordinary sums of powers via Newton’s series). For non-negative in-

tegers n,m and an arbitrary integer t

Σ1 nm =
m∑
j=0

∆jtm
[
(−1)j

(
j + t− 1

j + 1

)
+

(
n− t+ 1

j + 1

)]

Proof. Ordinary sum of powers is given by Σ1 nm =
∑m

j=0∆
jtm
∑n

k=1

(−t+k
j

)
, where∑n

k=1

(−t+k
j

)
= (−1)j

(
j+t−1
j+1

)
+
(
n−t+1
j+1

)
by means of segmented hockey stick identity (1.3). □

The special cases for t = 0 and t = 1 are widely known and appear in literature quite

frequently. For t = 0 and m = 3 we have the famous identity

Σ1 n3 = 0

(
n+ 1

1

)
+ 1

(
n+ 1

2

)
+ 6

(
n+ 1

3

)
+ 6

(
n+ 1

4

)
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which was discussed in [5, p. 190] and in [6].

The coefficients 0, 1, 6, 6, 0, 1, 14, 36, 24, . . . is the sequence A131689 in the OEIS [7].

The special cases for t = 1 and m = 2, 3, 4, 5 were discussed in [8]. For instance,

Σ1 n3 = 1

(
n

1

)
+ 7

(
n

2

)
+ 12

(
n

3

)
+ 6

(
n

4

)
Σ1 n4 = 1

(
n

1

)
+ 15

(
n

2

)
+ 50

(
n

3

)
+ 60

(
n

4

)
+ 24

(
n

5

)
The coefficients 1, 7, 12, 6, 1, 15, . . . is the sequence A028246 in the OEIS [7].

Interestingly enough that the paper [8] gives the formula for sums of powers

Σ1 nk =
k∑

j=0

j!

[(
n+ 1− r

j + 1

)
+ (−1)j

(
r + j − 1

j + 1

)]{
k

j

}
r

where
{
k
j

}
r
are generalized Stirling numbers of the second kind. The formula above is

identical to the proposition (1.4), which implies that finite differences can be expressed in

terms of generalized Stirling numbers of the second kind, that is ∆jtm = j!
{
m
j

}
t
.

By considering the special cases of the proposition (1.4) for t = 4, we observe rather

unexpected formulas for sums of powers, namely

Σ1 n0 = 1

((
n− 3

1

)
+

(
3

1

))
Σ1 n1 = 4

((
n− 3

1

)
+

(
3

1

))
+ 1

((
n− 3

2

)
−
(
4

2

))
Σ1 n2 = 16

((
n− 3

1

)
+

(
3

1

))
+ 9

((
n− 3

2

)
−
(
4

2

))
+ 2

((
n− 2

3

)
+

(
5

3

))
Σ1 n3 = 64

((
n− 3

1

)
+

(
3

1

))
+ 61

((
n− 3

2

)
−
(
4

2

))
+ 30

((
n− 3

3

)
+

(
5

3

))
+ 6

((
n− 3

4

)
−
(
6

4

))
The coefficients 1, 4, 1, 16, 9, . . . is the sequence A391633 in the OEIS [7]. In general,

Σ1 nm =
m∑
j=0

∆j4m
[(

n− 3

j + 1

)
+ (−1)j

(
j + 3

j + 1

)]
.

https://oeis.org/A131689
https://oeis.org/A028246
https://oeis.org/A391633
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To derive formula for double sum of powers, we apply summation operator over the ordi-

nary sum of powers (1.4) again, thus

Σ2 nm =
m∑
j=0

∆jtm

[
(−1)j

n∑
k=1

(
j + t− 1

j + 1

)
+

n∑
k=1

(
k − t+ 1

j + 1

)]
which yields

Σ2 nm =
m∑
j=0

∆jtm

[
(−1)j

(
j + t− 1

j + 1

)
n+

n∑
k=1

(
k − t+ 1

j + 1

)]
Thus,

Proposition 1.5 (Double sums of powers via Newton’s series). For non-negative inte-

gers n,m and an arbitrary integer t

Σ2 nm =
m∑
j=0

∆jtm
[
(−1)j

(
j + t− 1

j + 1

)
n+ (−1)j+1

(
j + t− 1

j + 2

)
n0 +

(
n− t+ 2

j + 2

)]

Proof. We have Σ2 nm =
∑m

j=0∆
jtm
[
(−1)j

(
j+t−1
j+1

)
n+

∑n
k=1

(
k−t+1
j+1

)]
, where

∑n
k=1

(
k−t+1
j+1

)
=

(−1)j+1
(
j+t−1
j+2

)
n0 +

(
n−t+2
j+2

)
by means of segmented hockey stick identity (1.3). □

For example, by setting t = 5, the double sums of powers are

Σ2 n0 = 1

((
n− 3

2

)
+

(
4

1

)
n−

(
4

2

))
Σ2 n1 = 5

((
n− 3

2

)
+

(
4

1

)
n−

(
4

2

))
+ 1

((
n− 3

3

)
−
(
5

2

)
n+

(
5

3

))
Σ2 n2 = 25

((
n− 3

2

)
+

(
4

1

)
n−

(
4

2

))
+ 11

((
n− 3

3

)
−
(
5

2

)
n+

(
5

3

))
+ 2

((
n− 3

4

)
+

(
6

3

)
n−

(
6

4

))
Σ2 n3 = 125

((
n− 3

2

)
+

(
4

1

)
n−

(
4

2

))
+ 91

((
n− 3

3

)
−
(
5

2

)
n+

(
5

3

))
+ 36

((
n− 3

4

)
+

(
6

3

)
n−

(
6

4

))
+ 6

((
n− 3

5

)
−
(
7

4

)
n+

(
7

5

))
The coefficients 1, 5, 1, 25, 11, 2, . . . is the sequence A391635 in the OEIS [7].

https://oeis.org/A391635
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In general,

Σ2 nm =
m∑
j=0

∆j5m
[(

n− 3

j + 2

)
+ (−1)j

(
j + 4

j + 1

)
n1 + (−1)j+1

(
j + 4

j + 2

)
n0

]
Similarly, we obtain the formula for the triple sums of powers

Proposition 1.6 (Triple sums of powers via Newton’s series). For non-negative integers

n,m and an arbitrary integer t

Σ3 nm =
m∑
j=0

∆jtm

[
(−1)j

(
j + t− 1

j + 1

)
Σ2 n0 + (−1)j+1

(
j + t− 1

j + 2

)
Σ1 n0+

+ (−1)j+2

(
j + t− 1

j + 3

)
Σ0 n0 +

(
n− t+ 3

j + 3

)]
Proof. By summing up double sums of powers (1.5), we get

Σ3 nm =
m∑
j=0

∆jtm
n∑

k=1

[
(−1)j

(
j + t− 1

j + 1

)
k1 + (−1)j+1

(
j + t− 1

j + 2

)
k0 +

(
k − t+ 2

j + 2

)]

=
m∑
j=0

∆jtm

[
(−1)j

(
j + t− 1

j + 1

) n∑
k=1

k1 + (−1)j+1

(
j + t− 1

j + 2

) n∑
k=1

k0 +
n∑

k=1

(
k − t+ 2

j + 2

)]

Note that
∑n

k=1 k
1 = Σ2 n0 and

∑n
k=1 k

0 = Σ1 n0. Thus,

n∑
k=1

(
k − t+ 2

j + 2

)
= (−1)j+2

(
j + t− 1

j + 3

)
Σ0 n0 +

(
n− t+ 3

j + 3

)
by segmented hockey stick identity (1.3). This completes the proof. □
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For example, by setting t = 4, the triple sums of powers are

Σ3 n0 = 1

((
n− 1

3

)
+

(
3

1

)
Σ2 n0 −

(
3

2

)
Σ1 n0 +

(
3

3

)
Σ0 n0

)
Σ3 n1 = 4

((
n− 1

3

)
+

(
3

1

)
Σ2 n0 −

(
3

2

)
Σ1 n0 +

(
3

3

)
Σ0 n0

)
+ 1

((
n− 1

4

)
−
(
4

2

)
Σ2 n0 +

(
4

3

)
Σ1 n0 −

(
4

4

)
Σ0 n0

)
Σ3 n2 = 16

((
n− 1

3

)
+

(
3

1

)
Σ2 n0 −

(
3

2

)
Σ1 n0 +

(
3

3

)
Σ0 n0

)
+ 9

((
n− 1

4

)
−
(
4

2

)
Σ2 n0 +

(
4

3

)
Σ1 n0 −

(
4

4

)
Σ0 n0

)
+ 2

((
n− 1

5

)
+

(
5

3

)
Σ2 n0 −

(
5

4

)
Σ1 n0 +

(
5

5

)
Σ0 n0

)
In general,

Σ3 nm =
m∑
j=0

∆j4m

[
(−1)j

(
j + 3

j + 1

)
Σ2 n0 + (−1)j+1

(
j + 3

j + 2

)
Σ1 n0+

+ (−1)j+2

(
j + 3

j + 3

)
Σ0 n0 +

(
n− 1

j + 3

)]
Continuing similarly, we derive formula for multifold sums of powers, which is

Theorem 1.7 (Multifold sums of powers via Newton’s series). For non-negative inte-

gers r, n,m and an arbitrary integer t

Σr nm =
m∑
j=0

∆jtm

[(
r∑

s=1

(−1)j+s−1

(
j + t− 1

j + s

)
Σr−s n0

)
+

(
n− t+ r

j + r

)]

Proof. By Newton’s series for power (1.2) and repeated applications of the segmented hockey

stick identity (1.3). □

In its explicit form
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Example 1.8 (Explicit expansion of the s–sum in the r-fold case). For non-negative integers

r, n,m and an arbitrary integer t, the r-fold sum Σr nm can be written as

Σr nm =
m∑
j=0

∆jtm
[
(−1)j

(
j + t− 1

j + 1

)
Σr−1 n0 + (−1)j+1

(
j + t− 1

j + 2

)
Σr−2 n0

+ (−1)j+2

(
j + t− 1

j + 3

)
Σr−3 n0 + · · ·+ (−1)j+r−1

(
j + t− 1

j + r

)
Σ0 n0

+

(
n− t+ r

j + r

)]
We may observe that

Proposition 1.9 (Multifold sum of zero powers). For integers r and n

Σr n0 =

(
r + n− 1

r

)
Proof. By hockey stick identity

∑t
k=0

(
j+k
j

)
=
(
j+t+1
j+1

)
. □

Which yields the following binomial variations of the multifold sums of powers (1.7)

Proposition 1.10 (Multifold sums of powers binomial form). For non-negative inte-

gers r, n,m and an arbitrary integer t

Σr nm =
m∑
j=0

∆jtm

[(
r∑

s=1

(−1)j+s−1

(
j + t− 1

j + s

)(
r − s+ n− 1

r − s

))
+

(
n− t+ r

j + r

)]

Proposition 1.11 (Multifold sums of powers binomial form re-indexed). For non-negative

integers r, n,m and an arbitrary integer t

Σr nm =
m∑
j=0

∆jtm

[(
r−1∑
s=0

(−1)j+s

(
j + t− 1

j + s+ 1

)(
r − s+ n− 2

r − s− 1

))
+

(
n− t+ r

j + r

)]

Finite differences of powers are closely related to Stirling numbers of the second kind

Lemma 1.12 (Finite differences via Stirling numbers). For non-negative integers j,m and

an arbitrary integer t

∆jtm =
m∑
k=0

(
t

k

){
m

j + k

}
(j + k)!
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Which implies variations of the formulas for sums of powers

Proposition 1.13 (Ordinary sums of powers via Stirling numbers). For non-negative

integers n,m and arbitrary integer t

Σ1 nm =
m∑
j=0

m∑
k=0

[
(−1)j

(
j + t− 1

j + 1

)
+

(
n− t+ 1

j + 1

)](
t

k

){
m

j + k

}
(j + k)!

Proof. By ordinary sums of powers via Newton’s series (1.4) and forward finite difference via

Stirling numbers of the second kind (1.12). □

By setting t = 0 into (1.13) yields well-known identity for sums of powers in terms of

Stirling numbers

Corollary 1.14. For non-negative integers n,m

Σ1 nm =
m∑
j=0

(
n+ 1

j + 1

){
m

j

}
j!

In general,

Proposition 1.15 (Multifold sums of powers via Stirling numbers). For non-negative

integers r, n,m and an arbitrary integer t

Σr nm =
m∑
j=0

m∑
k=0

[(
r∑

s=1

(−1)j+s−1

(
j + t− 1

j + s

)
Σr−s n0

)
+

(
n− t+ r

j + r

)](
t

k

){
m

j + k

}
(j + k)!

Proof. By multifold sums of powers via Newton’s series (1.7) and forward finite difference

via Stirling numbers of the second kind (1.12). □

The proposition above can be presented in a pure binomial form as well, by means of the

identity (1.9): Σr n0 =
(
r+n−1

r

)
.

In addition, we are able to express multifold sums of powers via Eulerian numbers, by

expressing the forward finite difference via the Worpitzky identity [9]

Lemma 1.16 (Worpitzky identity). For non-negative integers t,m

tm =
m∑
k=0

(
t+ k

m

)〈
m

k

〉
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where
〈
n
k

〉
are Eulerian numbers. Thus,

Lemma 1.17 (Finite difference via Eulerian numbers). For non-negative integers j,m and

an arbitrary integer t

∆jtm =
m∑
k=0

(
t+ k

m− j

)〈
m

k

〉
Therefore,

Proposition 1.18 (Multifold sums of powers via Eulerian numbers). For non-negative

integers r, n,m and an arbitrary integer t

Σr nm =
m∑
j=0

m∑
k=0

[(
r∑

s=1

(−1)j+s−1

(
j + t− 1

j + s

)
Σr−s n0

)
+

(
n− t+ r

j + r

)](
t+ k

m− j

)〈
m

k

〉

Proof. By multifold sums of powers via Newton’s series (1.7) and forward finite difference

via Eulerian numbers (1.17). □

Which implies variations of the formulas for sums of powers

Proposition 1.19 (Ordinary sums of powers via Eulerian numbers). For non-negative

integers n,m and an arbitrary integer t

Σ1 nm =
m∑
j=0

m∑
k=0

[
(−1)j

(
j + t− 1

j + 1

)
+

(
n− t+ 1

j + 1

)](
t+ k

m− j

)〈
m

k

〉

By setting t = 0 into (1.19) yields a well-known identity for sums of powers in terms of

Eulerian numbers

Corollary 1.20 (Sums of powers via Eulerian numbers in zero). For non-negative in-

tegers n,m

Σ1 nm =
m∑
j=0

m∑
k=0

(
n+ 1

j + 1

)(
k

m− j

)〈
m

k

〉
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2. Backward difference form

The formula for multifold sums of powers via Newton’s series (1.7) can be expressed in

terms of backward differences easily, because

Proposition 2.1. For integers j,m, t

∆jtm = ∇j(t+ j)m

Thus,

Proposition 2.2 (Multifold sums of powers via backward differences). For non-negative

integers r, n,m and an arbitrary integer t

Σr nm =
m∑
j=0

∇j(t+ j)m

[(
r∑

s=1

(−1)j+s−1

(
j + t− 1

j + s

)
Σr−s n0

)
+

(
n− t+ r

j + r

)]

Proof. By multifold sums of powers via Newton’s series (1.7) and by proposition (2.1). □

3. Central difference form

The formula for multifold sums of powers via Newton’s series (1.7) can be expressed in

terms of central differences easily, because

Proposition 3.1. For integers j,m, t

∆jtm = δj
(
t+

j

2

)m

Thus,

Proposition 3.2 (Multifold sums of powers via central differences). For non-negative

integers r, n,m and an arbitrary integer t

Σr nm =
m∑
j=0

δj
(
t+

j

2

)m
[(

r∑
s=1

(−1)j+s−1

(
j + t− 1

j + s

)
Σr−s n0

)
+

(
n− t+ r

j + r

)]

Proof. By multifold sums of powers via Newton’s series (1.7) and by proposition (3.1). □
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4. Future research

In this manuscript we focus on the idea to combine Newton’s interpolation formula for

forward differences (1.2) and the hockey-stick family identities (e.g (1.3)) to express the sums

of powers seamlessly.

This particular idea is great, however it can be generalized even further. Thus, the main

idea is to utilize an interpolation formula for power nm in terms of abstract difference operator

D(nm) and binomial coefficients
(
f(n)
k

)
.

We are not limited to linear difference operators ∆,∇, δ, there is a complete theory on

dynamic differential equations on time-scales, founded by Bohner and Peterson [10]. For

example, Jackson [11] derivative is given by

Dq(f(x)) =
f(qx)− f(x)

qx− x

Thus, finding interpolation formula for f(x) = xn in terms of Dq(f(x)) implies new for-

mulas for sums of powers.

In general, let be an abstract interpolation formula for powers

nm =
∑
k

(
f(n)

k

)
D(nm, k)

Thus, the formula of sums of powers involves the abstract difference operator D evaluated

at some point k and the hockey-stick family identity over the binomial coefficients
(
n
k

)
Σ1 nm =

∑
k

D(nm, k)
∑
j≤n

(
f(j)

k

)
Similarly, for multifold sums of powers

Σr nm =
∑
k

D(nm, k)

(
f(n+ r)

k

)
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Many interpolation approaches involve rising factorials x(n), falling factorials (x)n, or regular

factorials n!, and thus can be expressed in terms of binomial coefficients, because

(x)n
n!

=

(
x

n

)
;

x(n)

n!
=

(
x+ n− 1

n

)
.

In particular, Donald Knuth provides the formula for multifold sums of odd powers [3]

based on operator of central finite differences evaluated in zero, and Newton’s interpolation

formula for central differences [2]

Proposition 4.1 (Multifold sums of odd powers).

Σr n2m−1 =
m∑
k=1

(
n+ k − 1 + r

2k − 1 + r

)
1

2k
δ2k02m

=
m∑
k=1

(
n+ k − 1 + r

2k − 1 + r

)
(2k − 1)!T (2m, 2k)

where T (n, k) are the central factorial numbers of the second kind, see [12, section 58]

and [13, formula (10a)]

T (n, k) =
1

k!
δk0n =

1

k!

k∑
j=0

(−1)j
(
k

j

)(
k

2
− j

)n

Central factorial numbers of the second kind T (n, k) were defined by Riordan in [14, ch. 6.5,

formula (24)] by polynomial identity

Lemma 4.2 (Riordan power identity).

nm =
m∑
k=1

T (m, k)n[k]

where n[k] are central factorials n[k] = n
∏k−1

j=0

(
n+ k

2
− j
)
.

The sequence A008957 in the OEIS [7] provides non-zero central factorial numbers of the

second kind T (2n, 2k).

As future research direction, the Knuth’s formula (4.1) utilizes the operator of central

finite differences evaluated in zero. Thus, it is worth to investigate the existence of sums of

odd powers involving the central differences evaluated at an arbitrary integer point t, similar

to multifold sums of powers via Newton’s series for central differences.

https://oeis.org/A008957
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Conclusions

In this manuscript we have derived formulas for multifold sums of powers by utilizing

Newton’s interpolation formula. Furthermore, we provide formulas for multifold sums of

powers in terms of Stirling numbers of the second kind, and Eulerian numbers. In addition,

in (4) we discuss the future research directions that may lead to a complete framework for

sums of powers, by means of combining interpolation approaches, binomial coefficients and

variations of the hockey-stick identity for binomial coefficients. The most important results

of this manuscript are validated using Mathematica programs, see (5).
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Proof of Segmented hockey stick identity

First we split the sum
∑n

k=0

(−t+k
j

)
into two sub-sums so that we discuss them separately

n∑
k=0

(
−t+ k

j

)
=

t−1∑
k=0

(
−t+ k

j

)
+

n∑
k=t

(
−t+ k

j

)
We assume that the two sums above run over the partition {0, 1, 2, · · · , t, · · · , n}, with t < n.

Considering the sum
∑t−1

k=0

(−t+k
j

)
we notice that

t−1∑
k=0

(
−t+ k

j

)
=

(
−t

j

)
+

(
−t+ 1

j

)
+

(
−t+ 2

j

)
+ · · ·+

+

(
−t+ t− 2

j

)
+

(
−t+ t− 1

j

)
Thus

t−1∑
k=0

(
−t+ k

j

)
=

t∑
k=1

(
−k

j

)
=

t−1∑
k=0

(
−k − 1

j

)
By using the identity

(−k
j

)
= (−1)j

(
j+k−1

j

)
, we obtain(

−k − 1

j

)
=

(
−(k + 1)

j

)
= (−1)j

(
j + k

j

)
Thus

t−1∑
k=0

(
−t+ k

j

)
= (−1)j

t−1∑
k=0

(
j + k

j

)
= (−1)j

(
j + t

j + 1

)
by the hockey-stick identity

∑t
k=0

(
j+k
j

)
=
(
j+t+1
j+1

)
.

Considering the sum
∑n

k=t

(−t+k
j

)
we notice that

n∑
k=t

(
−t+ k

j

)
=

n−t∑
k=0

(
k

j

)
Thus

n∑
k=t

(
−t+ k

j

)
=

n−t∑
k=0

(
k

j

)
=

(
n− t+ 1

j + 1

)
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again by the hockey-stick identity
∑t

k=0

(
j+k
j

)
=
(
j+t+1
j+1

)
. Combining the two parts, we obtain

n∑
k=0

(
−t+ k

j

)
= (−1)j

(
j + t

j + 1

)
+

(
n− t+ 1

j + 1

)
This completes the proof.
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5. Mathematica programs

Use the Mathematica package [16] to validate the results

Mathematica Function Validates / Prints

MultifoldSumOfPowersRecurrence[r, n, m] Computes Σr nm

ValidateOrdinarySumsOfPowersViaNewtonsSeries[5] Validates Proposition (1.4)

ValidateDoubleSumsOfPowersViaNewtonsSeries[5] Validates Proposition (1.5)

ValidateMultifoldSumsOfPowersViaNewtonsSeries[5] Validates Theorem (1.7)

ValidateFiniteDifferenceViaStirlingNumbers[t] Validates Lemma (1.12)

ValidateFiniteDifferenceViaEulerianNumbers[t] Validates Lemma (1.17)

ValidateMultifoldSumsOfPowersViaCentralDifferences[r] Validates Proposition (3.2)

ValidateMultifoldSumsOfPowersViaBackwardDifferences[r] Validates Proposition (2.2)

ValidateMultifoldSumsOfPowersViaStirlingNumbers[r] Validates Proposition (1.15)

ValidateMultifoldSumsOfPowersViaEulerianNumbers[r] Validates Proposition (1.18)

ValidateMultifoldSumsOfPowersBinomialForm[r] Validates Proposition (1.10)

ValidateMultifoldSumsOfPowersBinomialFormReindexed[r] Validates Proposition (1.11)

DevOps Engineer

Email address: kolosovp94@gmail.com

URL: https://kolosovpetro.github.io
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