IDENTITIES IN ITERATED RASCAL TRIANGLES

PETRO KOLOSOV

ABSTRACT. In this manuscript, we show new binomial identities in iterated rascal triangles, revealing a connection between the Vandermonde convolution and iterated rascal numbers. We also present Vandermonde-like binomial identities. Furthermore, we establish a relation between iterated rascal triangle and (1, q)-binomial coefficients.

CONTENTS

1.	Introduction	1
2.	Binomial identities in Iterated Rascal Triangles	3
3.	Q-Binomial identities in Iterated Rascal Triangles	8
4.	Row sums conjecture	9
5.	Conclusions	11
6.	Acknowledgements	11
Re	ferences	11

1. INTRODUCTION

Rascal triangle is Pascal-like numeric triangle developed in 2010 by three middle school students, Alif Anggoro, Eddy Liu, and Angus Tulloch [1]. During math classes they were

2010 Mathematics Subject Classification. 11B25, 11B99.

Key words and phrases. Pascal's triangle, Rascal triangle, Binomial coefficients, Binomial identities, Binomial theorem, Generalized Rascal triangles, Iterated rascal triangles, Iterated rascal numbers, Vandermonde identity, Vandermonde convolution .

Sources: https://github.com/kolosovpetro/IdentitiesInRascalTriangle

Date: July 8, 2024.

challenged to provide the next row for the following number triangle

Teacher's expected answer was the one that matches Pascal's triangle, e.g "1 4 6 4 1". However, Anggoro, Liu, and Tulloch suggested "1 4 5 4 1" instead. They devised this new row via what they called diamond formula

$$\mathbf{South} = \frac{\mathbf{East} \cdot \mathbf{West} + 1}{\mathbf{North}}$$

So they obtained the following triangle

n/k	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	5	4	1			
5	1	5	7	7	5	1		
6	1	6	9	10	9	6	1	
$\overline{7}$	1	7	11	13	13	11	7	1

 Table 1. Rascal triangle. See the OEIS sequence A077028 [2].

Indeed, the forth row is "1 4 5 4 1" because $4 = \frac{1 \cdot 3 + 1}{1}$ and $5 = \frac{3 \cdot 3 + 1}{2}$.

Since then, a lot of work has been done over the topic of rascal triangles. Numerous identities and relations have been revealed. For instance, a few combinatorial interpretations of rascal numbers provided at [3], in particular, these interpretations establish a relation between rascal numbers and combinatorics of binary words. Several generalization approaches were proposed, namely generalized and iterated rascal triangles [4, 5]. In particular, the concept of iterated rascal numbers establishes a close connection between rascal numbers and binomial coefficients.

2. BINOMIAL IDENTITIES IN ITERATED RASCAL TRIANGLES

Prior we begin our discussion it is worth to introduce a few preliminary facts and statements. Define the iterated rascal number

Definition 2.1. Iterated rascal number

$$\binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{m}$$
(2.1)

The first important thing to notice is that the iterated Rascal number is a special case of the Vandermonde convolution. Consider the Vandermonde convolution [6]

$$\binom{a+b}{r} = \sum_{m=0}^{r} \binom{a}{m} \binom{b}{r-m}$$

Implies

$$\binom{n}{k} = \sum_{m=0}^{k} \binom{n-k}{m} \binom{k}{k-m}$$

Thus,

$$\binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{k-m}$$
(2.2)

Meaning that iterated rascal number is partial case of Vandermonde convolution of $\binom{n}{k}$ with the upper summation bound equals to *i*. Without further hesitation consider our findings.

Proposition 2.2. Iterated rascal triangle equals to Pascal's triangle up to *i*-th column. For every $k \leq i$

$$\binom{n}{k}_{i} = \binom{n}{k} \tag{2.3}$$

Then binomial identity follows

$$\binom{n}{i-k}_i = \binom{n}{i-k}$$

Applying binomial coefficients symmetry principle we obtain

$$\binom{n}{n-i+k}_i = \binom{n}{n-i+k}$$

Proof. Proof of proposition (2.2). Consider the following relation between binomial coefficients and iterated rascal numbers, for every $k \leq i$

$$\binom{n}{k} - \binom{n}{k}_{i} = \sum_{m=0}^{k} \binom{n-k}{m} \binom{k}{k-m} - \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{k-m} = 0$$

Yields

$$\sum_{m=k+1}^{i} \binom{n-k}{m} \binom{k}{m} = 0$$

It is indeed true, because binomial coefficients $\binom{k}{m}$ are zero for each $m \ge k+1$. So that for every $k \le i$

$$\binom{n}{k} - \binom{n}{k}_i = 0$$

Therefore, the proposition (2.2) is true.

Proposition 2.3. Iterated rascal triangle equals to Pascal's triangle up to 2i + 1-th row. For every $n \le 2i + 1$

$$\binom{n}{k}_i = \binom{n}{k}$$

Therefore, for every $i \ge 0$ and $n \ge 0$

$$\binom{2i+1-n}{k}_{i} = \binom{2i+1-n}{k}$$
(2.4)

Equation (2.4) is of interest because in contrast to rascal column identity (2.3) it gives relation over k for each i, so that it is true for all cases in i, k: i < k, i = k and k > i. In particular, equation (2.4) implies the row sums identity in iterated rascal triangles

$$\sum_{k=0}^{\infty} \binom{2i+1-n}{k}_{i} = 2^{2i+1-n}$$

Given n = 0 we obtain

$$\sum_{k=0}^{\infty} \binom{2i+1}{k}_i = 2^{2i+1}$$

and so on. Taking t = 2i + 1 in (2.4) yields

$$\binom{t-n}{k}_{t-i-1} = \binom{t-n}{k}$$

Proof. Proof of proposition (2.3). We have to prove that for every i, k

$$\sum_{m=0}^{k} \binom{2i+1-n-k}{m} \binom{k}{m} - \sum_{m=0}^{i} \binom{2i+1-n-k}{m} \binom{k}{m} = 0$$

For the case k < i proof is the same as proof of proposition (2.2). For the case k = i proof is trivial. Thus, the remaining case is k > i yields

$$\sum_{m=i+1}^{k} \binom{2i+1-n-k}{m} \binom{k}{m} = 0$$

Introducing sum in k to above equation

$$\sum_{m=i+1}^{k} \sum_{k} \binom{2i+1-n-k}{m} \binom{k}{m} = 0$$

Implies

$$\sum_{m=i+1}^{k} \binom{2i+2-n}{2m+1} = 0$$

because $\sum_{k=0}^{l} {\binom{l-k}{m}} {\binom{q+k}{n}} = {\binom{l+q+1}{m+n+1}}$, see equation (5.26) in [7]. Substituting m = i+1+m we get

$$\sum_{m=0}^{k} \binom{2i+2-n}{2(i+1+m)+1} = \sum_{m=0}^{k} \binom{2i+2-n}{2i+3+2m} = 0$$

Which is indeed true because $\binom{2i+2-n}{2i+3+2m} = 0$ for every $m, n \ge 0$.

Moreover, equation (2.4) gives Vandermonde-like identity

Proposition 2.4. (Vandermonde-like identity.)

$$\binom{2i+1-n}{k} = \sum_{m=0}^{i} \binom{2i+1-n-k}{m} \binom{k}{m}$$

In particular, given n = 0, 1 proposition (2.4) yields the following Vandermonde-like identities

$$\binom{2i+1}{k} = \sum_{m=0}^{i} \binom{2i+1-k}{m} \binom{k}{m}$$
$$\binom{2i}{k} = \sum_{m=0}^{i} \binom{2i-k}{m} \binom{k}{m}$$

Now, let's smoothly switch our focus to finite differences of binomial coefficients and iterated rascal numbers. Considering the table of differences $\binom{n}{k} - \binom{n}{k}_3$

	0			Π		l Pre	54															
	0	0		Π																		
	0	0	0	Π												Ţ						
	0	0	0	0							0											
	0	0	0	0	0				-ZAJUI	<u> 1055</u>	2											
	0	0	0	0	0	0																
	0	0	0	0	0	0	0															
	0	0	0	0	0	0	0	0														
	0	0	0	0	1	0	0	0	0													Im=8
	0	0	0	0	5	5	0	0	0	0											Ť	,
Out[67]=	0	0	0	0	15	26	15	0	0	0	0											
	0	0	0	0	35	81	81	35	0	0	0	0										
	0	0	0	0	70	196	262	196	70	0	0	0	0									
	0	0	0	0	126	406	658	658	406	126	0	0	0	0								
	0	0	0	0	210	756	1414	1716	1414	756	210	0	0	0	0							
	0	0	0	0	330	1302	2730	3830	3830	2730	1302	330	0	0	0	0						
	0	0	0	0	495	2112	4872	7680	8885	7680	4872	2112	495	0	0	0	0					
	0	0	0	0	715	3267	8184	14 2 3 2	18525	18525	14 2 3 2	8184	3267	715	0	0	0	0				
	0	0	0	0	1001	4862	13101	24 816	35 697	40186	35 697	24 816	13101	4862	1001	0	0	0	0			
	0	0	0	0	1365	7007	20163	41 217	64713	80587	80587	64713	41 217	20163	7007	1365	0	0	0	0		
	0	0	0	0	1820	9828	30 0 30	65 780	111 705	152 020	168 230	152 020	111 705	65 780	30 0 30	9828	1820	0	0	0	0	

 $ln[67]:= \label{eq:grid} Grid[Table[Binomial[n,k] - RascalNumber[n,k, 3], \{n,0,20\}, \{k,0,n\}], \ Frame \rightarrow \mbox{All} [n,1] \ All \ A$

Figure 1. Difference $\binom{n}{k} - \binom{n}{k}_3$. Highlighted column is $\binom{n}{4}$. Sequence A000332 in the OEIS [8].

We can spot that having i = 3 the k = 4-th column gives binomial coefficient $\binom{n}{4}$. Indeed, this rule is true for every i.

Proposition 2.5. (Row-column difference.) For every $i \ge 0$

$$\binom{n+2i}{i} - \binom{n+2i}{i}_{i-1} = \binom{n+i}{i}$$

Proof. We have previously stated that iterated rascal numbers are closely related to Vandermonde convolution (2.2). Thus, proposition (2.5) can be rewritten as

$$\sum_{m=0}^{i} \binom{n+i}{m} \binom{i}{i-m} - \sum_{m=0}^{i-1} \binom{n+i}{m} \binom{i}{i-m} = \binom{n+i}{i} \binom{i}{0}$$

Therefore, $\binom{n+2i}{i} - \binom{n+2i}{i}_{i-1} = \binom{n+i}{i}$ is indeed true.

Proposition (2.5) yields to few more identities. Applying binomial coefficients symmetry

$$\binom{n+2i}{n+i} - \binom{n+2i}{n+i}_{i-1} = \binom{n+i}{n}$$

Taking j = n + i gives

$$\binom{j+i}{j} - \binom{j+i}{j}_{i-1} = \binom{j}{j-i}$$

By symmetry

$$\binom{j+i}{i} - \binom{j+i}{i}_{i-1} = \binom{j}{i}$$

Proposition (2.5) can be generalized even further, for every i < k and i > k.

Proposition 2.6. (Finite difference of binomial coefficients and iterated rascal numbers for i < k.) For every i < k

$$\binom{n}{k} - \binom{n}{k}_{i} = \sum_{m=i+1}^{k} \binom{n-k}{m} \binom{k}{k-m}$$

Proof. It is true by means of Vandermonde convolution.

Proposition 2.7. (Finite difference of binomial coefficients and iterated rascal numbers for i > k.) For every i > k

$$\binom{n}{k} - \binom{n}{k}_{i} = \sum_{m=k+1}^{i} \binom{n-k}{m} \binom{k}{k-m}$$

Proof. It is true by means of Vandermonde convolution.

IDENTITIES IN ITERATED RASCAL TRIANGLES

3. Q-BINOMIAL IDENTITIES IN ITERATED RASCAL TRIANGLES

Consider the table of differences of binomial coefficients and iterated rascal numbers one more time as there is another pattern we can spot.

 $\label{eq:ln[67]:= Grid[Table[Binomial[n, k] - RascalNumber[n, k, 3], \{n, 0, 20\}, \{k, 0, n\}], Frame \rightarrow All]$

Figure 2. Difference $\binom{n}{k} - \binom{n}{k}_3$. Highlighted column is (1,5)-binomial coefficient $\binom{n}{k}^5$. Sequence A096943 in the OEIS [9].

The (1,q)-binomial coefficients $\binom{n}{k}^{q}$ are special kind of binomial coefficients defined by

Definition 3.1. (1, q)-Binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}^{q} = \begin{cases} q & \text{if } k = 0, n = 0 \\ 1 & \text{if } k = 0 \\ 0 & \text{if } k > n \\ \begin{bmatrix} n-1 \\ k \end{bmatrix}^{q} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}^{q} \end{cases}$$
(3.1)

Indeed, the relation shown in Figure (2) is true for every i, so that it establishes a relation between (1, q)-binomial coefficients and iterated rascal numbers.

Proposition 3.2. (Relation between iterated rascal numbers and (1, q)-binomial coefficients.) For every $i \ge 0$

$$\binom{2i+3+j}{i+2} - \binom{2i+3+j}{i+2}_{i} = \begin{bmatrix} i+2+j\\i+2 \end{bmatrix}^{i+2}_{i+2}$$

Taking t = i + 2 in (3.2) yields

$$\binom{2t-1+j}{t} - \binom{2t-1+j}{t}_{t-2} = \begin{bmatrix} t+j\\t \end{bmatrix}^t$$

In particular, having i = 1 proposition (3.2) gives the OEIS sequence A006503 [10] such that third column of (1, 3)-Pascal triangle A095660 [11].

Having i = 3 proposition (3.2) gives the OEIS sequence A096943 [9] such that third column of (1,5)-Pascal triangle A096940 [12].

For i = 5, the proposition (3.2) yields the OEIS sequence A097297 [13] such that seventh column of (1, 6)-Pascal triangle A096940 [14].

4. Row sums conjecture

In [5] the authors propose the following conjecture for row sums of iterated rascal triangles.

Conjecture 4.1. (Conjecture 7.5 in [5].) For every i

$$\sum_{k=0}^{4i+3} \binom{4i+3}{k}_{i} = 2^{4i+2}$$

Proof. Rewrite conjecture statement explicitly as

$$\sum_{k=0}^{4i+3} \sum_{m=0}^{i} \binom{4i+3-k}{m} \binom{k}{m} = 2^{4i+2}$$

Rearranging sums and omitting summation bounds yields

$$\sum_{m=0}^{i} \sum_{k} \binom{4i+3-k}{m} \binom{k}{m} = 2^{4i+2}$$
(4.1)

In Concrete mathematics [[7], p. 169, eq (5.26)], Knuth et al. provide the identity for the column sum of binomial coefficients multiplication

$$\sum_{k=0}^{l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1}$$
(4.2)

We can observe this pattern in the equation (4.1), thus the sum $\sum_{k} {\binom{4i+3-k}{m}} {k \choose m}$ equals to

$$\sum_{k} \binom{4i+3-k}{m} \binom{k}{m} = \binom{4i+4}{2m+1}$$

Therefore, conjecture (4.1) is equivalent to

$$\sum_{m=0}^{i} \binom{4i+4}{2m+1} = 2^{4i+2}$$

Note that

$$\sum_{m=0}^{2i+1} \binom{4i+4}{2m+1} = 2^{4i+3}$$

So that

$$\frac{1}{2}\sum_{m=0}^{2i+1} \binom{4i+4}{2m+1} = \sum_{m=0}^{i} \binom{4i+4}{2m+1} = 2^{4i+2}$$

This completes the proof.

Proposition 4.2. For every *i*

$$\sum_{k=0}^{4i+3} \binom{4i+3}{k}_i = 2^{4i+2}$$

In particular, equation (4.2) assumes the following identity in row sums of iterated rascal triangles

$$\sum_{k=0}^{n} \binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n+1}{2m+1}$$

Decomposing $\binom{n+1}{2m+1}$ in above equation yields

Proposition 4.3. (Iterated rascal triangles row sums.) For every i

$$\sum_{k=0}^{n} \binom{n}{k}_{i} = \sum_{m=0}^{2i+1} \binom{n}{m}$$

Proof.

$$\sum_{k=0}^{n} \binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n+1}{2m+1} = \sum_{m=0}^{i} \binom{n}{2m} + \binom{n}{2m+1} = \sum_{m=0}^{2i+1} \binom{n}{m}$$

5. Conclusions

In this manuscript we have discussed new binomial identities in iterated rascal triangles (2.4), (2.5), (2.6), revealing a connection between the Vandermonde convolution formula and iterated rascal numbers. We also present Vandermonde-like binomial identities (2.4). Furthermore, we establish a relation between iterated rascal triangles and (1, q)-binomial coefficients (3.2). All the results can be validated using supplementary Mathematica scripts at [15].

6. Acknowledgements

Author is grateful to Oleksandr Kulkov, Markus Scheuer, Amelia Gibbs for their valuable feedback and suggestions regarding the conjecture (4.1) at MathStackExchange discussion [16].

References

- [1] Anggoro, Alif and Liu, Eddy and Tulloch, Angus. The Rascal Triangle. The College Mathematics Journal, 41(5):393-395, 2010. https://doi.org/10.4169/074683410X521991.
- [2] Sloane, N. J. A. The Rascal triangle read by rows. Entry A077028 in The On-Line Encyclopedia of Integer Sequences, 2002. https://oeis.org/A077028.
- [3] Amelia Gibbs and Brian K. Miceli. Two Combinatorial Interpretations of Rascal Numbers. arXiv preprint arXiv:2405.11045, 2024. https://arxiv.org/abs/2405.11045.
- [4] Hotchkiss, Philip K. Generalized Rascal Triangles. arXiv preprint arXiv:1907.11159, 2019. https://arxiv.org/abs/1907.11159.
- [5] Gregory, Jena and Kronholm, Brandt and White, Jacob. Iterated rascal triangles. Aequationes mathematicae, pages 1–18, 2023. https://doi.org/10.1007/s00010-023-00987-6.
- [6] Andrews, George E. and Askey, Richard and Roy, Ranjan and Roy, Ranjan and Askey, Richard. Special functions, volume 71. Cambridge university press Cambridge, 2000.
- [7] Graham, Ronald L. and Knuth, Donald E. and Patashnik, Oren. Concrete mathematics: a foundation for computer science. Pearson Education India, 1994.
- [8] Sloane, N. J. A. Binomial coefficient binomial(n,4). Entry A000332 in The On-Line Encyclopedia of Integer Sequences, 2009. https://oeis.org/A000332.

- [9] Sloane, N. J. A. Sixth column of (1,5)-Pascal triangle. Entry A096943 in The On-Line Encyclopedia of Integer Sequences, 2004. https://oeis.org/A096943.
- [10] Sloane, N. J. A. Entry A006503 in The On-Line Encyclopedia of Integer Sequences, 1995. https: //oeis.org/A006503.
- [11] Sloane, N. J. A. Pascal (1,3) triangle. Entry A095660 in The On-Line Encyclopedia of Integer Sequences, 2004. https://oeis.org/A095660.
- [12] Sloane, N. J. A. Pascal (1,5) triangle. Entry A096940 in The On-Line Encyclopedia of Integer Sequences, 2004. https://oeis.org/A096940.
- [13] Sloane, N. J. A. Seventh column (m=6) of (1,6)-Pascal triangle. Entry A097297 in The On-Line Encyclopedia of Integer Sequences, 2004. https://oeis.org/A097297.
- [14] Sloane, N. J. A. Pascal (1,6) triangle. Entry A096940 in The On-Line Encyclopedia of Integer Sequences, 2004. https://oeis.org/A096940.
- [15] Kolosov, Petro. Identities in Iterated Rascal Triangles Mathematica programs, 2024. https://github. com/kolosovpetro/IdentitiesInRascalTriangle.
- [16] Kolosov, Petro. "Iterated rascal triangle row sums" on MathStackExchange, 2024. https://math. stackexchange.com/q/4941336/463487.

Version: 1.1.4-tags-v1-1-3.10+tags/v1.1.3.8cf81b6

SOFTWARE DEVELOPER, DEVOPS ENGINEER Email address: kolosovp94@gmail.com URL: https://kolosovpetro.github.io