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Abstract. Differentiation is process of finding the derivative, or rate of change, of a func-

tion. Derivative itself is defined by the limit of function’s change divided by the function’s

argument change as change tends to zero. In particular, for polynomials the function’s

change is calculated via Binomial expansion. This manuscript provides another approach to

reach polynomial’s function change as a limit of certain polynomial identity, and therefore

expressing the derivative of polynomial as double limit.
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1. Introduction

Differentiation is process of finding the derivative, or rate of change, of a function. Deriv-

ative of a function f(x) over domain x is defined by the limit of function’s change divided

by the function’s argument change as change tends to zero, i.e

df(x)

dx
= lim

h→0

[
f(x+ h)− f(x)

h

]
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Given the polynomial function f(x) = xn, n ∈ N its derivative expressed as follows

dxn

dx
= lim

h→0

[
(x+ h)n − xn

h

]
(1.1)

Therefore, the change of polynomial function from the nominator of (1.1) is being expressed

applying Binomial theorem [1] so that

(x+ h)n − xn =
n∑

k=1

(
n

k

)
xn−khk

Hence, arriving to well-known identity

dxn

dx
= lim

h→0

[
1

h

n∑
k=1

(
n

k

)
xn−khk

]
= nxn−1

More precisely, consider the case f(x) = x5, x ∈ R

dx5

dx
= lim

h→0

[
5h4x+ 10h3x2 + 10h2x3 + 5hx4

h

]
= 5x4

However, there is another approach to express the polynomial function’s change (x+h)n−xn

using polynomial identity [2], that is

Pm
b (x) = x2m+1, as b → x

Polynomials Pm
b (x) are polynomials in (x, b) ∈ R, for example

P0
b(x) = b,

P1
b(x) = 3b2 − 2b3 − 3bx+ 3b2x,

P2
b(x) = 10b3 − 15b4 + 6b5 − 15b2x+ 30b3x− 15b4x+ 5bx2 − 15b2x2 + 10b3x2,

P3
b(x) = −7b2 + 28b3 − 70b5 + 70b6 − 20b7 + 7bx− 42b2x+ 175b4x− 210b5x+ 70b6x

+ 14bx2 − 140b3x2 + 210b4x2 − 84b5x2 + 35b2x3 − 70b3x3 + 35b4x3

Further explanations on the topic of polynomials Pm
b (x) are available at [3, 4]. Now we can

express the polynomial function’s change in terms of Pm
b (x) for odd power polynomials as

limit

(x+ h)2m+1 − x2m+1 = lim
b→x+h

[
Pm

b (x+ h)− x2m+1
]
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For instance, let be m = 2 then x5 polynomial function’s change is

(x+ h)5 − x5 = lim
b→x+h

[
P2

b(x+ h)− x5
]

= lim
b→x+h

[
5b2x− 15bx2 − 15b2x2 + 10x3 + 30bx3 + 10b2x3 − 15x4 − 15bx4 + 5x5

]
= h5 + 5h4x+ 10h3x2 + 10h2x3 + 5hx4

Therefore, the derivative of odd-power polynomial x2m+1, x ∈ R, m ∈ N can be expressed

in terms of double limit as follows

dx2m+1

dx
= lim

h→0
lim

b→x+h

[
Pm

b (x+ h)− x2m+1

h

]
(1.2)

For example, given m = 1 and therefore f(x) = x3 we get

dx3

dx
= lim

h→0
lim

b→x+h

[
P1

b(x+ h)− x3

h

]
= lim

h→0

[
3h− 2h2 + 6x− 6hx− 6x2 +

3x2

h

− 3x3

h
− 3(h+ x) + 3h(h+ x) + 6x(h+ x)− 3x(h+ x)

h
+

3x2(h+ x)

h

]
= lim

h→0

[
h2 + 3hx+ 3x2

]
= 3x2

Even-powered 2m + 2, m ≥ 0 polynomials can be differentiated similarly, expressing the

function’s gain in terms of limit of the polynomial Pm
b (x), i.e

(x+ h)2m+2 − x2m+2 = lim
b→x+h

[
xPm

b (x+ h) + hPm
b (x+ h)− x2m+2

]
Given m = 1, the gain of even-powered polynomial x2m+2 in its extended form is

(x+ h)4 − x4 = lim
b→x+h

[
xP1

b(x+ h) + hP1
b(x+ h)− x4

]
= 3h3 − 2h4 + 9h2x− 8h3x+ 9hx2 − 12h2x2 + 3x3

− 8hx3 − 3x4 − 3h2(h+ x) + 3h3(h+ x)− 6hx(h+ x)

+ 9h2x(h+ x)− 3x2(h+ x) + 9hx2(h+ x) + 3x3(h+ x)

So that generally speaking of even-powered polynomial x2m+2, m ≥ 1 we can conclude that

its derivative can be expressed as double limit similarly to (1.2)

dx2m+2

dx
= lim

h→0
lim

b→x+h

[
xPm

b (x+ h) + hPm
b (x+ h)− x2m+2

h

]
(1.3)
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So that given m = 1, the derivative dx4

dx
of even-powered polynomial x2m+2 in its extended

form is

dx4

dx
= lim

h→0
lim

b→x+h

[
xP1

b(x+ h) + hP1
b(x+ h)− x4

h

]
= lim

h→0

[
3h3 − 2h4 + 9h2x− 8h3x+ 9hx2 − 12h2x2 + 3x3

− 8hx3 − 3x4 − 3h2(h+ x) + 3h3(h+ x)− 6hx(h+ x)

+9h2x(h+ x)− 3x2(h+ x) + 9hx2(h+ x) + 3x3(h+ x)
]
= 4x3

Therefore, in its general form the derivative of polynomial function f(x) = xn can be ex-

pressed via

dxn

dx
=


limh→0 limb→x+h

[
xPm

b (x+h)+hPm
b (x+h)−x2m+2

h

]
n = 2m+ 2

limh→0 limb→x+h

[
Pm

b (x+h)−x2m+1

h

]
n = 2m+ 1

(1.4)

2. Conclusions

In this manuscript we have discussed and proposed the way of finding of the derivative of

polynomials via double limit as it is stated in expression (1.4).

3. Verification of the results

The main results of the manuscript, i.e the expression (1.4) can be validated using sup-

plementary Mathematica programs at this link.
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