
DIFFIE-HELLMAN KEY EXCHANGE VIA REST

PETRO KOLOSOV

Abstract. Discussion on Diffie-Hellman Key Exchange and its implementation via REST.

Contents

1. Introduction 1

2. Diffie–Hellman key exchange implementation via REST 3

References 6

1. Introduction

Diffie–Hellman (DH) protocol is a method of asymmetric exchange of the cryptographic

keys for a group of two or more participants, developed in 1976 by cryptographers Ralph

Merkle, Whitfield Diffie and Martin Hellman. In contrast to the symmetric key exchange,

the Diffie–Hellman protocol eliminates the direct transfer of the shared secret between the

participants so that each participant computes a shared secret with his own private-public

key pair. The Diffie–Hellman protocol is based on a one-way function of the form

A = Ga mod P (1.1)

where A is the user’s public key, a is the user’s private key, P = 2Q+ 1 is modulus, such

that 2048 bits safe-prime because Q is also prime, G is generator such that G is primitive

root modulo P . We say that G is primitive root modulo P if for each 1 ≤ a ≤ P − 1 the

A = Ga mod P is unique and belong to the set {1, 2, . . . , P − 1}. The period of such cyclic

group ZP is P − 1 then.

Thus, the safety of the Diffie–Hellman protocol is based on the discrete logarithm prob-

lem which is unsolvable in polynomial time if the constants G and P are chosen correctly.

Graphically the flow of the Diffie–Hellman protocol can be expressed through the analogy

with mixing paints as the picture below shows

Date: March 14, 2022.

2010 Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Diffie-Hellman Key Exchange, DH key exchange, REST .

1



DIFFIE-HELLMAN KEY EXCHANGE VIA REST 2

Common Paint

Secret Colors

Secret Colors

Exchange 

Common Secret

Alice Paint Bob Paint

Figure 1. Diffie–Hellman key exchange concept diagram.

In contrast to the Diffie–Hellman based on discrete logarithm problem, there is an El-

liptic Curve Diffie–Hellman key exchange, which based on the elliptic curve discrete loga-

rithm problem. Although, the idea is quite same, the difference only in that Elliptic Curve

Diffie–Hellman ensures the same safety as discrete logarithm Diffie–Hellman with lower value

of the prime modulus P . For instance, 521 bit modulus used in Elliptic Curve Diffie–Hellman

is equally safe as 2048 bit modulus in discrete logarithm Diffie–Hellman. To summarize, the

flow of Diffie–Hellman key exchange is as follows. Given 2048 bits public prime modulus P

and generator G such that G is primitive root modulo P then

(1) Alice chooses her secret a.

(2) Alice sends to Bob her public key A = Ga mod P .

(3) Bob chooses his secret b.

(4) Bob sends to Alice his public key B = Gb mod P .

(5) Alice computes common secret s = Ba mod P .



DIFFIE-HELLMAN KEY EXCHANGE VIA REST 3

(6) Bob computes common secret s = Ab mod P .

(7) Alice and Bob have arrived to the same value

s = Ab mod P = Gab mod P (1.2)

s = Ba mod P = Gba mod P (1.3)

Alice

Alice secret: a

Bob

Alice public key: A

Bob secret: b

Bob public key: B

Common secret: s Common secret: s

6
5

4 3

2

1

Figure 2. Diffie–Hellman key exchange concept diagram.

2. Diffie–Hellman key exchange implementation via REST

Although, the idea of Diffie–Hellman key exchange looks quite simple, some remarks on

the concrete implementation should be added. Firstly, it is necessary to implement the

mechanism of key exchange request between two or more parties. As it discussed above, each

user has his own private-public keys pair, so in order to perform request between parties,

it should be implemented dedicate REST [OCJ+15] web–service endpoint, for instance the

POST: api/key-exchange-requests which takes the request body of the form

{

"requestedUserId": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

"publicKey": "RUNLMSAAAAC2lkqYcTGhutQPxcjvoqUELKoy0"

}

So, request sender generates on the client side a key pair, keeps private on in the file

system and shares the public in request to receiver. Therefore, the second party has received

the key exchange request. In order to display all the key exchange requests awaiting the



DIFFIE-HELLMAN KEY EXCHANGE VIA REST 4

confirmation of decline decisions, it is worth to implement another REST endpoint such that

GET: api/key-exchange-requests, so that requested party will have the list of requests to

proceed. This endpoint may return the data structure like follows

{

"keyExchangeRequests": [

{

"requestId": "81d314c1-913f-4686-827e-ef2a65ccc370",

"senderId": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

"senderPublicKey": "RUNLMSAAAAC2lkqYcTGhutQPxcjvoqUELKoy0"

}

],

"message": "SUCCESS",

"success": true

}

Finally, requested party should be able to confirm or decline the key exchange request, the

DELETE: api/key-exchange-requests endpoint should be implemented then. The server

is able to fetch the request thanks to the body endpoint takes

{

"requestId": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

"confirmed": true,

"publicKey": "string"

}

Therefore, an identifier of awaiting request is passed to the server among with boolean

value indicating the confirmation. Under the roof of this operation are also generation of

private-public keys pair for the requested party and generation of common secret stored in

client’s file system. As result, the initial request sender receives a public key as confirmation

from requested party. Requested side may get all his public keys via the REST web–service

using the resource GET: api/public-keys

{

"publicKeys": [

{

"partnerId": "ae9e10a4-0c7e-4911-8450-4139d4a114a7",

"partnerPublicKey": "RUNLMSAAAAAbc49wfaZ+QF9J2cu1S66bkp0"

}

],

"message": "SUCCESS",

"success": true



DIFFIE-HELLMAN KEY EXCHANGE VIA REST 5

}

Now requested participant is able to derive the common secret. In order to provide

an example, a simple command line interface is implemented. We have used an Ellip-

tic Curve Diffie–Hellman implementation ECDiffieHellmanCng Class from the namespace

System.Security.Cryptography of the .NET base class library. The P-256 curve is used.

More precisely, the following CLI commands are implemented

• MangoAPI.DiffieHellmanConsole login SENDER EMAIL SENDER PASSWORD

• MangoAPI.DiffieHellmanConsole key-exchange RECEIVER ID

• MangoAPI.DiffieHellmanConsole key-exchange-requests

• MangoAPI.DiffieHellmanConsole confirm-key-exchange REQUEST ID

• MangoAPI.DiffieHellmanConsole print-public-keys

• MangoAPI.DiffieHellmanConsole create-common-secret RECEIVER ID

Commands are self-explanatory, therefore we skip the detailed documentation on them. An

example of console output straightforward

Figure 3. Diffie—Hellman key exchange console output.



DIFFIE-HELLMAN KEY EXCHANGE VIA REST 6

In order to repeat the outputs on the screenshot the user may reference to the resources

• API: https://back.mangomessenger.company/swagger

• Source: https://github.com/MangoInstantMessenger/MangoMessengerAPI

Finally, both test accounts reached the same base 64 common secret.

Figure 4. Common secrets.

References

[OCJ+15] Shyue Ping Ong, Shreyas Cholia, Anubhav Jain, Miriam Brafman, Dan Gunter, Gerbrand Ceder,

and Kristin A Persson. The materials application programming interface (api): A simple, flexible

and efficient api for materials data based on representational state transfer (rest) principles.

Computational Materials Science, 97:209–215, 2015.

Email address: kolosovp94@gmail.com

URL: https://razumovsky.me

https://back.mangomessenger.company/swagger
https://github.com/MangoInstantMessenger/MangoMessengerAPI

	1. Introduction
	2. Diffie–Hellman key exchange implementation via REST
	References

