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Abstract. Mathematics Stack Exchange answer about the bibliography of Central Facto-

rial Numbers, by Markus Scheuer. See

• https://math.stackexchange.com/a/3665722/463487

1. Introduction

Some references: We find in

• Combinatorial Identities by J. Riordan (1963) - [1, chapter 6.5 the formula (24)]
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• The divided central differences of zero by L. Carlitz and J. Riordan (1961) - [2,

formula (10a)]
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• Interpolation by J. F. Steffensen (1927) - [3, Section 58]

The development of xr in central factorials

xr =
r∑

ν=0

x[ν] δ
ν0r

ν!
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leads to central differences of nothing, that is

δm0r =
m∑

ν=0
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Comment. The meaning of the left–hand side δm0r is given in the derivation below.

Here we show the derivation of (24) above following J. Riordan. It is based upon three

ingredients: operators, a recurrence relation, and Newton’s formula.

Operators. We recall the shift operator Ea and the difference operator ∆:

Eaf(x) = f(x+ a),

∆f(x) = f(x+ 1)− f(x),

and introduce the central difference operator δ:

δf(x) = f
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We can write the δ operator using shift and difference operators as

δf(x) =
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= ∆E
1
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1
2∆f(x). (2)

From (1), by successive application of δ, we obtain
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Note that (3) already has the shape of (24).
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Central factorials. We denote by x[n] the central factorial, defined as
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where we use Knuth’s notation for falling factorials xn = x(x− 1) · · · (x− n+ 1).

The central factorials satisfy an important recurrence relation. Using (2) we obtain
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This recurrence is analogous to d
dx
xn = nxn−1.

Newton’s formula. We expand f(x) in central factorials and apply the operator δ:

f(x) =
∑
n≥0

anx
[n],

δjf(x) =
∑
n≥0

anδ
jx[n] =

∑
n≥0

ann
jx[n−j], (5)

δjf(0) =
∑
n≥0

ann
jδn,j = ajj!. (6)

From (6) we obtain Newton’s formula in the form

f(x) =
∑
j≥0

x[j]

j!
δjf(0). (7)
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Finally, setting f(x) = xn in (7), denoting the coefficients by T (n, k), and using (6), we

obtain

xn =
n∑

k=0

T (n, k)x[k],

δk0n = T (n, k)k!. (8)

Using (3) in (8) gives
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,

which is formula (24), and the claim follows.
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