
.NET CORE AZURE UBUNTU VM DEPLOY GUIDE

PETRO KOLOSOV

Abstract. Simple and easy way to deploy your .NET Core web application to the Azure

Ubuntu-based virtual machine.

Contents

1. Virtual machine creation 1

2. Connect to VM via SSH 2

3. Install .NET SDK and Runtime to the Ubuntu 20.04 3

4. Copy build files to the VM via SSH 8

5. Configure Ubuntu service 11

6. Install and configure Nginx server 12

7. Configure domain name and SSL 15

7.1. Buy and configure domain name using Cloudflare 15

7.2. Configure nginx for the Domain name 17

7.3. Configure the HTTPS using LetsEncrypt Certbot 19

8. Conclusions 22

References 22

1. Virtual machine creation

Firstly, it is necessary to create a virtual machine (unexpectedly) where deployment to be

hosted on. In this guide is considered free virtual machine of type Standard B1ms (1 vcpu,

2 GiB memory) with Ubuntu 20.04 operating system. Definitely it won’t be considered step

by step creation in this document, however required VM parameter are as follows:

• Size: Standard B1ms (1 vcpu, 2 GiB memory)

• OS: Ubuntu Server 20.04 LTS - Gen2

• Availability options: No infrastructure required

• Authentication type: SSH public key

Date: October 31, 2022.

2010 Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Azure, DevOps, Virtual machine, Deploy, Nginx, SSH, CI/CD, Azure pipelines,

Github actions .
1

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 2

• SSH public key source: Use existing public key (create it before you created

VM)

• Public inbound ports: HTTP(80), HTTPS(443), SSH(22)

• OS disk type: Standard SSD

• Encryption type: Default

• Public IP: Basic SKU, Static (be sure to create static IP)

• Select inbound ports: HTTP(80), HTTPS(443), SSH(22)

• Boot diagnostics: Disabled

Chosen parameters of the virtual machine are collected in order to minimize vm’s cost. If

you are not sure, refer to the screenshots via the reference [Kol22c].

2. Connect to VM via SSH

In order to configure virtual machine manually (as this guide tends to describe), we have

to connect to it via SSH using the specified RSA private and public key-pair. It is assumed

that programmer uses WSL2 under Windows 10 in order to work with VM via the SSH. By

default, SSH keys are stored under the path c/Users/username/.ssh. Assume that RSA

key-pair is stored there and have the names id rsa and id rsa.pub for private and public

keys respectively. In order to interact the VM via SSH it is necessary to copy RSA keypair

to the WSL username/.ssh folder, we use the commands under WSL

• cp /mnt/c/Users/pkolosov/.ssh/id rsa /.ssh/

• cp /mnt/c/Users/pkolosov/.ssh/id rsa.pub /.ssh/

Then connection is available now using the command

• ssh -i /.ssh/id rsa razumovsky r@MachineStaticIP

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 3

Figure 1. SSH connected successfully.

Therefore, the SSH connection between WSL2 under Windows 10 is established so that we

are able to configure our virtual machine as per our needs.

3. Install .NET SDK and Runtime to the Ubuntu 20.04

Next, we should install the .NET SDK (unexpectedly again) in order to run our appli-

cation. Proceeding, we refer to the Microsoft documentation article named Install the

.NET SDK or the .NET Runtime on Ubuntu [Cor22], precisely the version is 20.04. As per

documentation, consider the following commands to install .NET 6.0 SDK to your Ubuntu

VM

https://docs.microsoft.com/en-us/dotnet/core/install/linux-ubuntu
https://docs.microsoft.com/en-us/dotnet/core/install/linux-ubuntu

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 4

Figure 2. Ubuntu 20.04 install .NET 6.0 SDK MSDN.

Prepare your virtual machine applying the commands

• wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb

-O packages-microsoft-prod.deb

• sudo dpkg -i packages-microsoft-prod.deb

• rm packages-microsoft-prod.deb

The terminal output is as follows

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 5

Figure 3. Virtual machine preparation..

Apply the following commands in order to install the SDK

• sudo apt-get update

• sudo apt-get install -y apt-transport-https

• sudo apt-get update

• sudo apt-get install -y dotnet-sdk-6.0

The terminal output after .NET 6.0 SDK installation is as follows

Figure 4. Ubuntu 20.04 install .NET 6.0 SDK terminal output.

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 6

Figure 5. Ubuntu 20.04 install .NET 6.0 SDK terminal output.

Figure 6. Ubuntu 20.04 install .NET 6.0 SDK terminal output.

In order to install the .NET Runtime we refer again to the Microsoft documentation, that

is

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 7

Figure 7. Install the .NET SDK or the .NET Runtime on Ubuntu MSDN.

We install .NET runtime using the commands

• sudo apt-get update

• sudo apt-get install -y apt-transport-https

• sudo apt-get update

• sudo apt-get install -y aspnetcore-runtime-6.0

Terminal output as follows

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 8

Figure 8. Ubuntu 20.04 install .NET 6.0 Runtime terminal output.

Therefore, the .NET SDK and Runtime are installed so that we are able to run specified

.NET app on behalf of our Ubuntu virtual machine.

4. Copy build files to the VM via SSH

Now we have to build our .NET Core Web Application to the specified folder, say

/mango-linux-build/src. Note that it is much better to build it on behalf of Windows 10

main machine, not WSL 2.0 one. We use the following commands to build .NET Core Web

App with Release configuration

• cd E:/RiderProjects/MangoMessengerAPI/MangoAPI.Presentation

• dotnet publish "MangoAPI.Presentation.csproj" -r linux-x64

-o /mango-linux-build/src

Terminal output is as follows

Figure 9. Publish .NET Web app terminal output.

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 9

Let’s create the folder mango-backend where build files to be stored. Do not forget to

connect to your Azure VM via SSH. Do not also forget to assign read-write privileges to the

folder, using the commands

• sudo mkdir /mango-backend

• sudo chmod a+rwx /mango-backend

Terminal output:

Figure 10. Create folder at remote VM.

As next step consider to copy build files to the remote folder on your Azure VM so that

we execute our program after. We copy the build files on behalf of WSL2 this time. In order

to copy the build files we use following commands

• cd /mnt/e/mango-linux-build

• scp -r -i /.ssh/id rsa ./src/*

razumovsky r@VM IP ADDRESS:/home/razumovsky r/mango-backend

where id rsa is the private key. Terminal output:

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 10

Figure 11. Copy build files via SSH.

Ensure build files are copied successfully to the remote VM, use the command ls -l

mango-backend. Terminal output:

Figure 12. Check files at remote VM.

Therefore, the specified .NET Core web application is copied to the Ubuntu virtual ma-

chine so that it can be executed thanks to the previously installed .NET SDKs and runtimes.

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 11

5. Configure Ubuntu service

In this section the main aim is to implement an Ubuntu service such that runs our previ-

ously built .NET Core web application. It means that we have to configure the environment

variables used in our application as well as to configure the firewall rules so that application

will be able to communicate with another resources like databases, blobs etc. Ubuntu server

refers to the entry point of the web app, that is

/home/razumovsky r/mango-backend/MangoAPI.Presentation

Use the command to create service

sudo vim /etc/systemd/system/mangoback.service

Paste the following text there

[Unit]

Description=Mango Messenger Backend Service for Azure Dev Environment

After=network.target

[Service]

Environment=ASPNETCORE_URLS=http://+:8080/

Environment=MANGO_JW_ISSUER="https://front.mangomessenger.company"

Environment=MANGO_JWT_AUDIENCE="https://back.mangomessenger.company"

Environment=MANGO_JWT_SIGN_KEY="d32d7cea-4cb8-4488-aa94-323ffb8cbdf4"

Environment=MANGO_EMAIL_NOTIFICATIONS_ADDRESS="mango@gmail.com"

Environment=MANGO_FRONTEND_ADDRESS="https://front.mangomessenger.company/"

Environment=MANGO_DATABASE_URL="database.connection.string"

Environment=MANGO_SEED_PASSWORD="seedPass"

Environment=MANGO_BLOB_URL="blob.url.connection.string"

Environment=MANGO_BLOB_CONTAINER="container.name"

Environment=MANGO_BLOB_ACCESS="blob.access.url"

Environment=MANGO_MAILGUN_API_KEY="mailgun.api.key"

Environment=MANGO_MAILGUN_API_BASE_URL="https://api.mailgun.net"

Environment=MANGO_MAILGUN_API_BASE_DOMAIN="back.mangomessenger.company"

Environment=MANGO_BACKEND_ADDRESS="https://back.mangomessenger.company/"

Type=simple

WorkingDirectory=/home/razumovsky_r/mango-backend

ExecStart=/home/razumovsky_r/mango-backend/MangoAPI.Presentation

User=razumovsky_r

Group=razumovsky_r

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 12

[Install]

WantedBy=multi-user.target

From the vim it should look as follows [Kol22b]

Figure 13. Ubuntu service opened in vim.

Make sure all resources are listening from the outside, check firewall rules on database side

prior to run the service. Start and check health of the service using

• sudo systemctl start mangoback

• sudo systemctl status mangoback

Terminal output:

Figure 14. Run ubuntu service and check status, terminal output.

As a result of this section, we have created a specified ubuntu service that runs our

previously copied .NET Core web application using installed .NET SDK and runtime.

6. Install and configure Nginx server

Now we have to configure the nginx server in order to expose our .NET Core web appli-

cation to the outside. As a result of this section web app will be exposed and accessible via

VM’s external IP address. Let’s install it using the commands

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 13

• sudo apt update -y

• sudo apt install -y nginx build-essential

Terminal output:

Figure 15. Ubuntu install nginx terminal output.

Next, it is necessary to create nginx configuration [Kol22a] that exposes our application,

that is

server {

server_name STATIC_IP_ADDRESS_OF_VM;

location / {

include proxy_params;

proxy_pass http://127.0.0.1:8080;

}

location /swagger {

include proxy_params;

proxy_pass http://127.0.0.1:8080;

}

location /api {

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 14

include proxy_params;

proxy_pass http://127.0.0.1:8080;

}

location /notify {

proxy_pass http://127.0.0.1:8080;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection "upgrade";

proxy_set_header Host $host;

proxy_cache_bypass $http_upgrade;

}

}

We create it at the following path on behalf of our Azure VM via SSH

sudo vim /etc/nginx/conf.d/back.mangomesenger.company.conf

Restart nginx and validate its state using the commands

• sudo systemctl restart nginx

• sudo nginx -t

Terminal output:

Figure 16. Restart and test nginx terminal output.

Now we must be able to find our application listening to the

http://STATIC IP ADDRESS OF THE VM

And actually it works as expected

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 15

Figure 17. .NET Core web app accessed via browser using static IP address of the
virtual machine.

In this section we have installed and configured the nginx web server so that it exposes our

.NET Core web application (run on behalf of Ubuntu service) from the previous section and

makes it available from the web browser under the url http://STATIC IP ADDRESS OF THE VM.

7. Configure domain name and SSL

In this section our main aim is to assign specified (previously bought) domain name to

our .NET Core web application as well as to configure SSL certificate for it. What is domain

name?

Domain name – is a string of text that maps to a numeric IP address, used to access a

website from client software [Clo22]. The actual address of a website is a complex

numerical IP address (e.g. 103.21.244.0), but thanks to DNS, users are able to enter

human-friendly domain names and be routed to the websites they are looking for.

7.1. Buy and configure domain name using Cloudflare. For instance, the domain

name can be bought on the one of the following resources

• https://www.name.com

• https://www.namecheap.com

• https://get.tech

https://www.name.com/
https://www.namecheap.com/
https://get.tech/

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 16

After that we have to associate our domain with the cloudflare.com service in order to

manage out domain name and get some free DDoS protection and request analytics. For

instance, I have bought a domain name withing name.com service and configured it using

the following DNS records:

• hassan.ns.cloudflare.com

• sonia.ns.cloudflare.com

So it looks like as follows

Figure 18. Domain name configuration at name.com.

After that we have to configure our domain name at cloudflare providing an IP address of

the virtual machine we host our .NET Core web application, that is

https://www.cloudflare.com/
https://www.name.com/
https://www.name.com/

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 17

IP_ADDRESS_OF_THE_VM

Figure 19. Domain name configuration at cloudflare.com.

7.2. Configure nginx for the Domain name. Now our aim is to make sure that nginx

server accepts connections to the VM via the Domain name we previously bought and con-

figured. Yet again we use SSH + RSA key pair and change the address in our nginx

configuration as follows

server {

server_name back.mangomesenger.company;

location / {

include proxy_params;

proxy_pass http://127.0.0.1:8080;

}

location /swagger {

include proxy_params;

proxy_pass http://127.0.0.1:8080;

}

https://www.cloudflare.com/

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 18

location /api {

include proxy_params;

proxy_pass http://127.0.0.1:8080;

}

location /notify {

proxy_pass http://127.0.0.1:8080;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection "upgrade";

proxy_set_header Host $host;

proxy_cache_bypass $http_upgrade;

}

}

We, actually, have changed only the top line server name to the

server name back.mangomesenger.company;

Let’s restart and test the nginx server using the commands

• sudo systemctl restart nginx

• sudo nginx -t

So that our web application is available now under the HTTP external url, yet without SSL

certificate

http://back.mangomesenger.company/swagger

And it works as desired

http://back.mangomesenger.company/swagger

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 19

Figure 20. Application is available under the Domain name.

7.3. Configure the HTTPS using LetsEncrypt Certbot. Configuring the HTTPS for

our nginx server we are going to use the CertBot tool from the LetsEncrypt. We install it

to the Ubuntu virtual machine using the following commands:

• sudo apt update -y

• sudo apt install -y python3 python3-pip python3-dev build-essential

• sudo pip3 install --upgrade pip

• sudo pip3 install certbot

• sudo pip3 install certbot-nginx

A partial terminal output is as follows

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 20

Figure 21. Install CertBot tool terminal output.

Last part remaining is to certify out nginx web server so that it will accept HTTPS con-

nections, we do it using the commands:

• sudo certbot --nginx

• sudo systemctl restart nginx

• sudo nginx -t

The terminal output is as follows

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 21

Figure 22. sudo certbot --nginx terminal output.

Finally, our web application accepts the HTTPS connections now

https://back.mangomesenger.company/swagger

And certificate looks as follows

https://back.mangomesenger.company/swagger

.NET CORE AZURE UBUNTU VM DEPLOY GUIDE 22

Figure 23. sudo certbot --nginx terminal output.

This completes the current section.

8. Conclusions

We have reviewed ways to deploy ASP. NET Core Web API to the Ubuntu virtual machine

using nginx server. Also, we have bind vm under specified domain name and implemented

HTTPS via lets encrypt certbot.

References

[Clo22] Cloudflare. ”What is a domain name? — Domain name vs. URL”. published electronically at

https://www.cloudflare.com/learning/dns/glossary/what-is-a-domain-name/, 2022.

[Cor22] Microsoft Corporation. ”Install the .NET SDK or the .NET Runtime on Ubuntu”. published elec-

tronically at https://docs.microsoft.com/en-us/dotnet/core/install/linux-ubuntu, 2022.

[Kol22a] Petro Kolosov. ”Nginx config gist”. published electronically at https://gist.github.com/

kolosovpetro/f993f02f8cf2e9be9f574791d5a740ce, 2022.

[Kol22b] Petro Kolosov. ”Ubuntu service example gist”. published electronically at https://gist.github.

com/kolosovpetro/c4e863d0bb8876d41f5e5ee479c46db3, 2022.

[Kol22c] Petro Kolosov. ”VM Creation screens”. published electronically at https://drive.google.com/

file/d/1odouQARBd1mV-tV6OTnj5B-bxkl0N40J/view?usp=sharing, 2022.

Email address: kolosovp94@gmail.com

URL: https://razumovsky.me/

https://www.cloudflare.com/learning/dns/glossary/what-is-a-domain-name/
https://docs.microsoft.com/en-us/dotnet/core/install/linux-ubuntu
https://gist.github.com/kolosovpetro/f993f02f8cf2e9be9f574791d5a740ce
https://gist.github.com/kolosovpetro/f993f02f8cf2e9be9f574791d5a740ce
https://gist.github.com/kolosovpetro/c4e863d0bb8876d41f5e5ee479c46db3
https://gist.github.com/kolosovpetro/c4e863d0bb8876d41f5e5ee479c46db3
https://drive.google.com/file/d/1odouQARBd1mV-tV6OTnj5B-bxkl0N40J/view?usp=sharing
https://drive.google.com/file/d/1odouQARBd1mV-tV6OTnj5B-bxkl0N40J/view?usp=sharing

	1. Virtual machine creation
	2. Connect to VM via SSH
	3. Install .NET SDK and Runtime to the Ubuntu 20.04
	4. Copy build files to the VM via SSH
	5. Configure Ubuntu service
	6. Install and configure Nginx server
	7. Configure domain name and SSL
	7.1. Buy and configure domain name using Cloudflare
	7.2. Configure nginx for the Domain name
	7.3. Configure the HTTPS using LetsEncrypt Certbot

	8. Conclusions
	References

