A STUDY ON PARTIAL DYNAMIC EQUATION ON TIME SCALES
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ABSTRACT. Let P}*(z) be a 2m + 1—degree integer-valued polynomial in x,b. Let be a

two-dimensional time scale A2 = T} x Ty = {t = (x,b): x € Ty, b € To}. Let be T; = Ts.

In this manuscript we derive and discuss the following partial dynamic equation on time

scales. For every t € Ty, z,b € A2, m = const, m € N

_ Py (x)
Ax

oPy (x)
Ab ’

z=t, b=t

(t2m+1)A +
z=t, b=o(t)

where o(t) > t is forward jump operator. In addition, we discuss various derivative operators
in context of partial cases of above equation, we show finite difference, classical derivative,

q—derivative, g—power derivative on behalf of it.
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1. DEFINITIONS

We now set the following notation, which remains fixed for the remainder of this paper:

o Let be a function f: T — R and ¢ € T then f2(¢) is delta time-scale deriva-

tive | | of f

flo(t) — () _ flo(t)) — f(t)
pu(t) olt)—t

fA) =

where p(t) = o(t) — t, pu(t) # 0 and o(t) > t is forward jump operator.

Of (ti,...,t, , . . . . .
. %, f2i(t) is delta partial derivative of f: A" — R on n—dimensional
time scale A" [ , ; |, defined as a limit

f(tla s 7ti—1agi(ti)7tt+1a cee atn) - f(tla s ati—lys’i)tt—i—la s

, tn)

A; _ .
fti (t) - 51,112, o (tz) — s
siFoi(ti)

where o;(t;) > t; and o;(t;) — s; # 0.

e D, f(x) is g—derivative | , ; ; ]

D, f(x) = L4 = (@)

qr —x
where x £ 0, v € R, ¢ € R.

e D, .f(t) is g—power derivative | ]

f(qt") — f(1)

Doadt) = T

Y

where qt" — t # 0 and n is odd positive integer and 0 < ¢ < 1.

e D,f(x) is g—power derivative

f(a?) = f(z)

x99 —x

'qu(l’) =

where 27 # z, v € R, ¢ € R.

I

e P'(z), x,b € R, m € Nis 2m + 1—degree integer-valued polynomial |

I

(1.1)
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where A,,,, m € N is a real coefficient defined recursively

(27’ -+ 1)(2:>, ifr= m,
m _1yd—1 .
Ampr =14 (2r+ 1)(2:) > dezri1 Amd (2&1)%3%—2“ it0<r<m,
0, ifr<0orr>m,
where B, are Bernoulli numbers [\Wei]. It is assumed that By = 1.

e 7 is an integer time scale such that o(t) =t + 1 and u(t) = 1.

e R is a real time scale such that o(t) =t + At and u(t) = At, At — 0.

e ¢® is a quantum time scale such that o(t) = gt and u(t) = qt — t, [page 18 | 1]-
e RY is a quantum power time scale such that o(t) = t? and u(t) =t — t.

e ¢®" is a pure quantum power time scale such that o(t) = qt" > t, 0 < q < 1, u(t) =

gt"™ —t and n is positive odd integer | ].

2. INTRODUCTION

Time-scale calculus is quite graceful generalization and unification of the theory of dif-
ferential equations. Firstly being introduced by Hilger | | in his Ph.D thesis in 1988
and thereafter greatly extended by Bohner and Peterson | ] in 2001, the calculus on
time scales became a sharp tool in the world on differential equations. Various derivative
operators like classical derivative % f(z), g—derivative D, f(x), g—power derivative D, f(z),
finite difference Af(x) etc, may be simply expressed in terms of time-scale derivative over

particular time scale T. For instance,

fl(z)=fAx), z€T=R

Af(z) = f2x), 2z€T=7
Dyof(x) = f3(x), 2eT=¢"
Dyf(x) = f3(z), zeT=¢"
D,f(x) = fA(z), z€T=R?

In context of Computer Science, namely object oriented programming paradigm, the time
scale calculus may be thought as unified interface of derivative operator. Furthermore, the

idea of time-scale calculus was slightly extended in | , , , .

3. MAIN RESULTS

Time scale derivative of the polynomial t*"*! may be expressed as follows
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Theorem 3.1. Let P}'(z) be a 2m + 1—degree integer-valued polynomial defined by (1.1).
Let be a two-dimensional time scale A> = T; x Ty = {t = (x,b): x € Ty, b € Ty}. Let be
T, =T,y. For everyt e Ty, x,b€ A%, m € N, m = const

A _ oPy' (z) i oPy' (z)

2m—+1
(t ) Az Ab

?

z=t, b=0(t) r=t, b=t

where

e o(t) >t is forward jump operator,

OPy ()

X is the value of the partial derivative on time scales of Py*(x) with

z=t, b=o(t)
respect to the variable x, evaluated at v =t, b = o(t),

. M’ZLb(x) is the value of the partial derivative on time scales of P}*(x) with respect
r=t, b=t

to the variable b, evaluated at x =t, b =1.

In other words, theorem 3.1 says

For every odd-exponent polynomial t2"*1, its derivative on time scales equals
to the sum of the value of the partial derivative on time scales of P}*(x) with
respect to the variable x, evaluated at © = t, b = o(t) and the value of
the partial derivative on time scales of P}*(x) with respect to the variable b,

evaluated at x =t, b=1t.

In extended form theorem 3.1 may be written as

x=t, b=0(t)
4. DISCUSSION AND EXAMPLES

To understand the nature of theorem 3.1, let’s discuss an example of some popular time
scales, like integer time scale Z, real time scale R, quantum time scale ¢®, quantum-power
time scale R?. We use the principle Divide et Impera ! in order to understand entire behavior

of theorem 3.1.
4.1. Time scale of integers T = 7Z x Z.

Corollary 4.1. (Finite difference.) Let be a two-dimensional time scale N> = Zx 7, .= {t =
(x,b): v €Z, beZ}. For everyt € Z, x,b€ N> =7Z xZ, m € N

At2m+1 — an ('1.) + an (.’L’) (t,t) :
Az z=t, b=o(t) Ab z=t, b=t
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where the forward jump operator o(t) is defined as o(t) =t + 1.

Example 4.2. Let bet € Z, x,b € N> =7Z x Z, m € N and let m = 1, then

aPl%("L‘) 2
—~ 2 =_3b b
Ar 3b+3

OP, ()

Az

0Py () 2
VA e/ R

2 60° + 6bx
0Py (z)

Ab

=3t + 3¢t2
z=t, b=0(t)

r=t, b=t
Summing up previously obtained partial time-scale derivatives, we get the ordinary finite
difference of odd polynomial t*™ ', t € Z, x,b € N> =Z x7Z, m € N

3 _ 0Py (x) OP, ()

2
b = 1.
A A 3t 4 3t +

r=t, b=t

At

z=t, b=0(t)

Example 4.3. Let bet € Z, x,b € N> =7Z x Z, m € N and let m = 2, then

2
812 (%) _ 5y 3007 4 406" — 155" + 100 — 300% + 2006°
xXr
OP?2
OP;(z) _ 1 + 306" — 6063z + 30022
Ab
P2
OP, () = 5t + 10¢% + 10¢% + 5¢*
Az z=t, b=0(t)
OP3(x) .
Ab r=t, b=t

Summing up previously obtained partial time-scale derivatives, we get time ordinary finite
difference of odd polynomial t*"*', t € Z, x,b€ N> =7Z x7Z, m €N

OP%(x) OP(x)
5 _ b b
At = Ab

= 1+ 5¢ + 10¢% + 10¢3 + 5t*.
Az

r=t, b=t

z=t, b=0o(t)

Corollary 4.4. For everyt € Z, v,b€ N> =Z xZ, m € N

2m
2 1
z=t, b=0(t) r

r=1

P} (x)
Ax

Corollary 4.5. For everyt € Z, x,b€ N> =Z x7Z, m € N
Py ()

=1
Ab

r=t, b=t

4.2. Time scale of real numbers T = R x R.
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Corollary 4.6. (Classical derivative.) Let be a two-dimensional time scale A*> = R x R :=
{t=(z,b): z€R, beR}. Foreveryt eR, 2,be A>=R xR, meN

d oP}(z) oP} ()

_t2m+1 — 2~ b\ b\

dt ox ob '

z=t, b=o(t) z=t, b=t

where o(t) =t + At, At — 0.

Example 4.7. Let be t ¢ R, z,b € A2 =R xR, m € N and let m = 1, then
0Py (x)

ox
0Py ()

ob

= —3h+ 3b?
= 6b — 6b%> — 31 + Gbx

OP, (v)

ox
OP;(z)
ob

= 3t + 32
z=t, b=o(t)

=3t

xr=t, b=t

Summing up previously obtained partial time-scale derivatives, we get classical derivative of
odd polynomial t*" 1 tc R, 2 € A2 =R xR, meN
d B OP}(z) oP}(z)

a _ 92
dt ox ob St

r=t, b=t

x=t, b=o(t)

Example 4.8. Let bet € R, 2,b € A2 =R xR, m € N and let m = 2, then

OP?

ab ) _ 152 +30b” — 156" + 10bx — 30b°x + 20b°z,

i

)

55(93‘) = 300 — 60b° + 30b* — 30bz + 90b*x — 60b°x + 52 — 30bz” + 30b°2?
% = 512 1 5¢!

8x z=t, b=0(t)

ab r=t, b=t

Summing up previously obtained partial time-scale derivatives, we get classical derivative of
an odd polynomial > t e R, r € A2 =R xR, meN
d 5 OP%(x) N OPZ(z)

a 4
dt ox ob o

r=t, b=t

z=t, b=0(t)

4.3. Quantum time scale T = ¢® x ¢~.



A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 7

Corollary 4.9. (Q-derivative | |.) Let be a two-dimensional time scale A* = ¢® x ¢ :=
{t=(z,b): ze€d® bed®}. Foreveryte¢® z,be A>=¢® x¢® meN
D2+ = oPy (x) i oPy (x)

Az z=t, b= (t) Ab z=t, b=t

where o(t) = qt, ¢ > 1.

Example 4.10. Let be t € ¢%, x,b € A2 = ¢® x ¢®, m € N and let m = 1, then

OPy ()
Ax
0Py (z)
Ab
OPy ()

Ax

aP;(l') 2 2 2,2
—_— = 3qt +t° + qt° — 2q°t
Ab r=t, b=t

= —3b + 3b*

= 3b — 2b% + 3bg — 2b%q — 2b%¢* — 3z + 3bx + 3bgx

= —3qt + 3¢*t*
z=t, b=0(t)

Summing up previously obtained partial time-scale derivatives, we get q—derivative of odd
polynomial 2" t € ¢®, z,0 € A2 = ¢® x ¢®, meN

OP}(z) oP}(z)
3_ 9% b
D> = Ab

=t* + qt* + ¢t
AL qt"+q

r=t, b=t

z=t, b=o(t)

For every t € g%, x,b € A?> = ¢® x ¢® the following polynomial identity holds as ¢ tends
to zero 9p!
lim M
q—0 Ab

However, it would be generalized as follows

= ¢2

z=t, b=t

Corollary 4.11. For everyt € ¢&8, 2,0 € A2 =¢® x ¢® meN
oP}(x)
lim —b 7

20 Ab

=",

r=t, b=t

Example 4.12. Let bet € ¢®, z.b € A2 = ¢® x ¢®, m € N and let m = 2, then

oP?
% = —15b% 4 300 — 15b* 4 5bx — 15b%x + 10b%x + 5bgr — 15b%qx + 10b3qx
P2
0 Abéx) = 106 — 156% + 6b* + 10b*q — 15b%q + 6b*q + 10b%¢> — 15b°¢* + 6b*¢* — 156%¢°

+ 6b*¢> + 6b*q* — 15bx + 300%x — 15b%x — 15bgx + 30b%qx — 156%qx + 30b%¢%x
— 15V%¢*x — 1563¢Px + 5a? — 15ba? + 10b%2* — 15bgx? 4+ 10b%qx® + 10b% g% 2>
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OP?
oP(x) — 5t — 1062 — 15¢°° + 156> + 10g** — 5g't!
Az z=t, b=0(t)
OP2
Abzgx) = —5qt? + 10¢°> + 15¢°t> — 15¢°° + t* + qt* + ¢*t* — 9¢°t* + 64"t
r=t, b=t

Summing up previously obtained partial time-scale derivatives, we get the q—derivative of
odd polynomial >+ t € ¢®, 2,0 € A2 =¢® x ¢, meN
oP(x) OP(z)

Ax Ab |y ey

D,t° = =t' + qt* + Pt + Pt + ¢t

z=t, b=o(t)

4.4. Quantum power time scale T = R? x RY.

Corollary 4.13. (Q-power derivative | ].) Let be a two-dimensional time scale A* =

R? x RY := {t = (x,b): beRY, z € RI}. For everyt e RY, z,b€ A>=RIxR? meN
oP} (x) oP}(x)
D $2m+l _ b b \/

where the forward jump operator is defined as o(t) =t?, q¢ > 1.

(Z,1),

Example 4.14. Let bet € RY, 2,b € A2 =R? x R?, m € N and let m = 1, then
oP}(2)

— b — _3b+ 3v?
Ax *
oP!
Abz(;x) = 3b — 2b* + 307 — 267 — 26" — 3 + 3bx + 3b%w
0P, () = —3t7 4 3t%
Az z=t, b=0(t)
OPy(7) — {2 4 3t — 2420 4 1+
AD r=t, b=t

Summing up previously obtained partial time-scale derivatives, we get g—power derivative of
odd polynomial t*™ 1, t c R, 2,bc A2=RIx R?, m €N

o PPL) oP}(2)
1 Az Ab N

=12 + 2 11

z=t, b=c(t)

Example 4.15. Let bet € RY, z,b € A2 =R x RY, m € N and let m = 2, then

P}
—Ab(x) = —15b° + 300° — 15b* + 5bx — 15b°x + 106°x + 5bx? — 156727 4 10b°z7
x
P2
oP(x) Abéx) = 106° — 15b° 4 6b* + 10?7 — 15b> + 66" 4 106" — 156°*7 + 6b>+

— 156129 4 602129 1 6p1 39 — 15h2 + 300%x — 15032 — 15092 + 30629z
— 150%%% + 306" 9 — 156292 — 150" T29% + 522 — 15b2% + 10622
— 150922 + 100%922 + 10b' T2
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2
oP, () = —10t%7 4 15637 — 59 + 5¢lte — 1541420 4 1013
Az z=t, b=0(t)
2
IPy(r) = t* + 1077 — 1537 4 6¢% — 5¢!T9 4 3T 4 1512 220 gyl h3a
Ab x=t, b=t

Summing up previously obtained partial time-scale derivatives, we get g—power derivative of
odd polynomial t*™*1 t € RY, z,b € A2=RIx R4, m €N
OP}(x) OP}(x)

5 _
Pyt” = Ax Ab

e A AR AR A

r=t, b=t

z=t, b=0(t)

Another polynomial identity, that is exponential sum holds

Corollary 4.16. For everyt € R, x,b€ A2 =RIxRY tc R, meN

. OPP(x) <l
lim —22 = tk
=0 Ab a=t, b=t kz:%

4.5. Pure quantum power time scale T = ¢®" x ¢®". In this subsection we discuss a pure

quantum power time scale ¢®' provided by Aldwoah, Malinowska and Torres in | ],

among with the g—power derivative operator D, ,f(t) defined by
flat™) — f(t)

D, f(t) = ,

ot = L=
where n is odd positive integer and 0 < ¢ < 1.

Corollary 4.17. (Quantum power derivative | |.) Let be a two-dimensional time

scale A2 = g% x ¢% = {t = (z,b): b€ &, e qu}. For every t € ¢%, z,b € A2 =
& x¢®, meN

oP}(x) oP}(x)
D, $2mtl _ b b
nat Az A

Y

z=t, b=0(t) x=t, b=t

where o(t) = qt", o(t) > t.

Example 4.18. Let be t € ¢%, 2,0 € A2 =¢® x ¢®, m € N and let m = 1, then

(9Pé(x) _ 2
Ar —3b+ 3b

Pl . . . ;
aAbéx) =3b— 202 4 3bq — 201 g — 2% ¢* — 3z + 3bx + 3V qx
OP}(x) ; 2,2j
—22(t,0(t)) = —3qt? + 3¢t~

1, 0(0) = 300+ 34
OP,(x)

Ab

(t,t) = t* + 3qt/ — 2¢*t% + qt'™I
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Summing up previously obtained partial time-scale derivatives, we get g—power derivative of

odd polynomial ™, t € g%, z,be A2 =¢® x¢¥, meN
OP}(x 0Pl (x A ,
z z=t, b=0(t) b r=t, b=t

Another polynomial identity, that is exponential sum holds

Corollary 4.19. For everyt € ¢%, 2,0 e A2 =¢® x¢®, t e R, meN
8Pm 2m
lim lim —2 (z)

Z- b\ tk
ji=0g—1  Ab

z=t, b=t  j_g

An identity in even polynomials holds too

Corollary 4.20. For everyt € ¢%, 2,0 e A2 =¢® x¢®, t e R, meN

lim lim oP; (x)

— tQm
j—0g—0 Ab

z=t, b=t

Example 4.21. Let be t € ¢%, 2,0 € A2 =¢® x ¢®, m € N and let m = 2, then

oP? . , .
% = —15b% 4 300® — 15b* 4 5bx — 15b%x + 10b%x + 5bgar? — 15b%qa? + 1063ga’
xXr
P2 ) . . ) )
%éx) = 106% — 156% + 6b* + 106' g — 156*Hq + 60> g + 106% g% — 15612 ¢

+ 6622 % — 15b% ¢ 4+ 6T ¢ + 6bY ¢t — 150 + 30b%x — 15b%x — 15 qx
+ 306 M g — 156* qx + 30b% ¢%x — 1561 2 — 150% ¢ + 5a? — 15ba?
+ 10b%2? — 15 gz 4 100 gz? + 100% ¢*2®

2
an (x) — _10q2t2j + 15q3t3] _ 5q4t4] + 5qt1+] _ 15q2t1+2j + 10q3t1+3j
Az z=t, b=o(t)
2
—3PAbZ()x) =+ 10q2t2j — 15q3t3j + 6q4t4j — 5qt1+j + qt3+j + 15q2t1+2j + q2t2+2j — 9q3t1+3j
r=t, b=t

Summing up previously obtained partial time-scale derivatives, we q—power derivative of odd

polynomial 2" t € ¢® . be A2 =¢® x¢®¥, meN

oP} oP} ‘ . . ‘
Dn,qt5 _ b(x) b(x) — q4t4g + qt3+] + q2t2+2] + q3t1+3j.
Az z=t, b=0(t) Ab z=t, b=t
5. PROOF OF MAIN THEOREM
By [Lemma 3.1 | ]], for every z € R, m € N it is true that

P (z) = 2>t (5.1)
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Proof of theorem 3.1. Let be ,0 € A2 =T, x Ty := {t = (x,0): v €Ty, b€ Ty}. Let
be T; = Ty. Assume that time-scale derivative (z2m+1)2 is

.. Pl (o(x) —P(t)
= lim lim
bz t—ax o'(x) —1

2m+1)A

(z , (5.2)

where o(z) > z is forward jump operator. However, equation (5.2) is not a timescale
derivative of P}*(z) over z how it might seem because of denominator o(x) —¢. Parameter b
of P}*(z) is implicitly incremented as well. Let’s try to express nominator of (5.2) in terms

of partial derivative apgb(x) on timescales. Let be the following equation

Py (@) = Pi(x) = Pi'(x); - Ab
Let ¢ — 2 in (5.2). Then nominator of (5.2) equals to
Py (0(2)) = Py () = Py (z) — Pi(z) + A

where A is yet implicit term. Let’s now collapse the terms f,,(x,b) from both sides of above
equation, such that

Pl (0(z)) =Py (o(z)) + A
Therefore,
A =PJ(0(x) ~ Py (0(x) = P ()2(r,0(0)) - A

Now, let’s express the nominator of (5.2) as follows
Py (0(2)) = Pi'(x) = Py (2)7 (2, 0(b) - Az + Py (2); (2, b) - Ab
Py (0(2) = Py (2) = Py (2)7 (2, 0(b)) - (o(x) — ) + Py'(2); (2,0) - (o(b) — 1)

We can collapse the terms (o(z) — x), (o(b) — b) in above expressions, as b — x. Therefore,

(
P™
a(ac( ( i) x( )—Pm( ) (l’ O'( ))+P21(56‘)1)A(1'737)
1

o(x

Finally, by the identity (5.1) we can express timescale derivative of 22" x € A* = T} x

Ty, m € N as
OPy (x) | OPP(@)
Az z=t, b=0(t) Ab

This completes the proof. 0

(A =

r=t, b=t
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6. MATHEMATICA SCRIPTS

To fulfill our study, we attach here a link to the set of Mathematica programs, designed
to verify the results of current manuscript. To reach these programs follow the link | |.

To reproduce results, proceed as follows:

e Time scale of integers T = 7Z x Z:
— Example 4.2: Execute the commands of Mathematica package

x Set sigmal[x ] := x + 1in Mathematica package and execute definition.
* Execute timeScaleDerivativeX[1, x, bl which produces —3b + 3b°.

* Execute Expand[timeScaleDerivativeX[1, t, sigma[t]]] which pro-
duces 3t + 3t2.

* Execute timeScaleDerivativeB[1, x, b] which produces 1 — 6b* + 6bx.
x Execute timeScaleDerivativeB[1, t, t] which produces 1.
* Execute mainTheorem[1] which produces 1 + 3t + 3t2.

— Example 4.3: Execute the commands of Mathematica package

x Set sigma[x_] := x + 1 in Mathematica package and execute definition.

* timeScaleDerivativeX[2, x, b] which produces 5b—30b%+40b3—15b*+
10bx — 30b%z + 20bx.

* Expand[timeScaleDerivativeX[2, t, sigma[t]]] which produces 5t +
10¢% + 10t + 5t

* timeScaleDerivativeB[2, x, b] which produces 1 + 30b* — 60632 +
306222,

*x timeScaleDerivativeB[2, t, t] which produces 1.

* mainTheorem[2] which produces 1 4+ 5t 4+ 10t2 + 10¢3 + 5t*.

e Time scale of real numbers T = R x R:
— Example 4.7: Execute the commands of Mathematica package

x Set sigmal[x_] := x + Global‘dx in Mathematica package and execute
definition.

* Execute timeScaleDerivativeX[1, x, b] which produces —3b + 3b°.

* Execute Limit[Expand[timeScaleDerivativeB[1, x, bl], dx -> 0]
which produces 6b — 60*> — 3x + 6bx.

* Execute timeScaleDerivativeX[1, t, t] which produces —3t + 3t2.
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* Execute Limit[Expand[timeScaleDerivativeB[1, t, t]], dx -> 0]
which produces 3t.

* Execute Limit [mainTheorem[1], dx -> 0] which produces 3t2.

— Example 4.8: Execute the commands of Mathematica package

x Set sigma[x ] := x + Global‘dx in Mathematica package and execute
definition.

* Execute Limit[Expand[timeScaleDerivativeX[2, x, bl], dx -> 0]
which produces —15b% + 30b® — 15b* + 10bx — 30b%x + 20b%x.

* Execute Limit[Expand[timeScaleDerivativeB[2, x, bl]], dx -> 0]
which produces 300% — 60b3 + 30b* — 30bx + 90b*x — 60b%x + 522 — 30ba? +
306222

* Execute Limit [Expand[timeScaleDerivativeX[2, t, sigma[t]]], dx
-> 0] which produces —5t% + 5t4.

x Execute Limit[Expand[timeScaleDerivativeB[2, t, t]], dx -> 0]
which produces 5t2.

x Execute Limit [mainTheorem[2], dx -> 0] which produces 5t*.

e Quantum time scale T = ¢® x ¢*:
— Example 4.10: Execute the commands of Mathematica package
x Set sigmal[x_] := x * Global‘q in Mathematica package and execute
definition.
* Execute Expand[Simplify[timeScaleDerivativeX[1, x, b]]] which
produces —3b + 3b%.
* Execute Expand([Simplify[timeScaleDerivativeB[1, x, b]]] which
produces 3b — 2b? + 3bg — 2b%q — 2b%¢® — 3x + 3bx + 3bg.
* Execute Expand [Simplify[timeScaleDerivativeX[1, t, sigmal[t]l]]]
which produces —3qt + 3¢*t2.
* Execute Expand[Simplify[timeScaleDerivativeB[1, t, t]]] which
produces 3qt + t? + qt* — 2¢*t%.
* Execute Expand [Simplify[mainTheorem[1]]] which produces t? + qt* +

242
qte.
— Example 4.12: Execute the commands of Mathematica package
x Set sigmal[x ] := x * Global‘q in Mathematica package and execute
definition.

* FExecute Expand[Simplify[timeScaleDerivativeX[2, x, b]]] which
produces —15b% +300% — 15b* + 5bx — 15622 + 1003z + 5bgx — 15b%qr + 10b3 .
* Execute Expand[Simplify[timeScaleDerivativeB[2, x, b]]] which
produces 106> — 1563 4 6b* + 10b%q — 15b%q + 6b*q + 10b%¢*> — 15b3¢* +
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6b%q? — 1563¢® + 6b*q® + 6b*q* — 15bx + 30b%x — 15b3x — 15bqx + 30b%qxr —
15b3qx + 30b%¢*x — 15b%¢*x — 15633 x + 5? — 15bx? + 10b%2% — 15bqa? +
100%qz? + 10b2¢222.

* Execute Expand [Simplify[timeScaleDerivativeX[2, t, sigmal[t]]]]
which produces 5qt? — 10¢%t? — 15¢%t3 + 15¢3t® + 10¢3t* — 5qt.

* Execute Expand[Simplify[timeScaleDerivativeB[2, t, t]]] which
produces —5qt? + 10¢°t? + 15¢%t3 — 15¢3t3 + t* 4 qt* + ¢*t* — 9¢3t* + 6¢*¢*.

* Execute Expand [Simplify[mainTheorem[2]]] which produces t* + qt* +
Pt + Pt + gt

— Corollary 4.11: Execute the commands of Mathematica package

* Set sigmal[x_] := x * Global‘q in Mathematica package and execute
definition.

* Execute Limit [Expand [Simplify[timeScaleDerivativeB[m, t, tl]],

q -> 0] for various values of m.

e Quantum power time scale T = R? x R?:
— Example 4.14: Execute the commands of Mathematica package
* Set sigmal[x_] := x A Global‘q in Mathematica package and execute
definition.
* Execute Expand[Simplify[timeScaleDerivativeX[1, x, b]]] which
produces —3b + 3b°.
* Execute Expand[Simplify[timeScaleDerivativeB[1, x, b]]] which
produces 3b — 2b? + 307 — 2b%1 — 2b119 — 3z + 3bx + 3b9x.
* Execute Expand [Simplify[timeScaleDerivativeX[1, t, sigmalt]]]]
which produces —3t? 4 3t%4.
* Execute Expand[Simplify[timeScaleDerivativeB[1, t, t]]] which
produces t? + 3t? — 2¢29 4 t1+a,
* Execute Expand [Simplify[mainTheorem[1]]] which produces % + t27 +
titae,
— Example 4.15: Similarly to Example 4.14 with m = 2.
— Corollary 4.16: Execute the commands of Mathematica package
* Set sigmal[x_] := x A Global‘q in Mathematica package and execute
definition.
* Execute Limit [Expand [Simplify[timeScaleDerivativeB[m, t, tl]],

q —> 0] for various values of m.

e Pure quantum power time scale T = ¢®" x ¢®":
— Example 4.18: Execute the commands of Mathematica package
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* Set sigma[x_] := Global‘q * x A Global‘j in Mathematica package
and execute definition.
* Execute Expand[Simplify[timeScaleDerivativeX[1, x, b]]] which
produces —3b + 3b%.
* Execute Expand[Simplify[timeScaleDerivativeB[1, x, b]]] which
produces 3b — 2b? + 3b7q — 2b* g — 2b% ¢ — 3x + 3bx + 3V qx.
* Execute Expand [Simplify[timeScaleDerivativeX[1, t, sigma[t]l]]]
which produces —3qt? + 3¢*t%.
* Execute Expand[Simplify[timeScaleDerivativeB[1, t, t]]] which
produces t2 4 3qt/ — 2¢°t¥ + qt'*7.
* Execute Expand [Simplify[mainTheorem[1]]] which produces t*+¢*t% +
gt'ti
— Example 4.21: Similarly as Example 4.18 for m = 2.
— Corollary 4.19: Execute the commands of Mathematica package
* Set sigmal[x_] := Global‘q * x A Global‘j in Mathematica package
and execute definition.
* Execute Limit [Limit [Expand [Simplify[timeScaleDerivativeB[m, t,
t]111, q -> 11, j -> 0] for various values of m.
— Corollary 4.20: Execute the commands of Mathematica package
* Set sigmal[x_] := Global‘q * x A Global‘j in Mathematica package
and execute definition.
* Execute Limit [Limit [Expand [Simplify[timeScaleDerivativeB[5, t,

t]11, q => 01, j —-> 0] for various values of m.

7. CONCLUSION AND FUTURE RESEARCH

In this manuscript we have discussed partial time scale differential equation involving
derivatives of polynomials in context of time scale A2 = T} x Ty where T; = T,. Future
research can be conducted to study the case Ty # Ty, which makes the theorem 3.1 to be

generalised

OPy () | OPY()
Az Ab
where o, (z, b) is arbitrary differentiable function. Also, it is worth to discuss the theorem 3.1

— Oém<.1', b)(l’Qm—H)A,

in context of high order derivatives on time scales. We have established a few power identities,
and shown the theorem 3.1 for different 2-dimensional time scales A? like integer time scale

7 x 7, real time scale R x R, quantum time scale ¢® x ¢® and quantum power time scale
R? x RY.
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