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1. Introduction

Interpolation is a process of finding new data points based on the range of a discrete

set of known data points. Interpolation has been well-developed in between 1674–1684 by

Issac Newton’s fundamental works, nowadays known as foundation of classical interpolation

theory [1].

The first time I found interpolation interesting was in 2016 when I observed a table of finite

differences of cubes. Back then, I was a first-year mechanical engineering undergraduate. Due

to my lack of mathematical knowledge, I started re-inventing interpolation formulas myself,

fueled by pure passion and a sense of mystery. All the mathematical laws and relations exist

from the very beginning; we only reveal and describe them, I thought. That mindset truly

inspired me, and thus, my own mathematical journey began.

Consider finite differences of cubes n3

n n3 ∆(n3) ∆2(n3) ∆3(n3)

0 0 1 6 6

1 1 7 12 6

2 8 19 18 6

3 27 37 24 6

4 64 61 30 6

5 125 91 36

6 216 127

7 343

Table 1. Table of finite differences of the polynomial n3.

The problem of interpolation of polynomials is a classical problem in mathematics and

has been widely studied in literature. For instance, Concrete mathematics [2, p. 190] gives

interpolation of cubes by using Newton’s interpolation formula
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because

f(x) = ∆df(0)

(
x

d

)
+∆d−1f(0)

(
x

d− 1

)
+ · · ·+ f(0)

(
x

0

)
=

d∑
r=0

∆d−rf(0)

(
x

d− r

)
However, interpolation of cubes can be also done in a different way. The key point that

interpolation formula above iterates over the order d of finite difference. Alternatively, we

can interpolate cubes n3 as a sum of first order finite difference ∆ as follows

n3 = ∆03 +∆13 +∆23 + · · ·+∆(n− 1)3 =
n−1∑
k=0

∆k3

We know that ∆3n3 = 6 is the constant for each n. The second difference of cubes ∆2n3 is

a linear relation in terms of third order finite difference ∆3n3

∆2n3 = (n+ 1)∆3n3 = 6(n+ 1) (1)

Finally, the first order finite difference ∆n3 is the following relation in terms of second order

finite difference

∆n3 = ∆03 +∆203 +∆213 + · · ·+∆2(n− 1)3 = 1 +
n−1∑
k=0

6(k + 1)

Altering summation bounds yields

∆n3 = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3 + · · ·+ 6 · n = 1 + 6
n∑

k=0

k (2)

Therefore, we are able to express first order finite difference of cubes in form of sums as

follows

∆(03) = 1 + 6 · 0

∆(13) = 1 + 6 · 0 + 6 · 1

∆(23) = 1 + 6 · 0 + 6 · 1 + 6 · 2

∆(33) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3
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Now it is time to assemble all the results above to get the polynomial n3. Having the relation

in cubes n3 = ∆03 +∆13 +∆23 + · · ·+∆(n− 1)3 we get

n3 = [1 + 6 · 0] + [1 + 6 · 0 + 6 · 1] + [1 + 6 · 0 + 6 · 1 + 6 · 2]

+ · · ·+ [1 + 6 · 0 + 6 · 1 + 6 · 2 + · · ·+ 6 · (n− 1)] (3)

By rearranging the terms of the equation above, we get summation in terms of k(n− k)

n3 = n+ [(n− 0) · 6 · 0] + [(n− 1) · 6 · 1] + [(n− 2) · 6 · 2]

+ · · ·+ [(n− k) · 6 · k] + · · ·+ [1 · 6 · (n− 1)] (4)

By applying compact sigma sum notation yields an identity for cubes n3

n3 = n+
n−1∑
k=0

6k(n− k) (5)

The term n in the sum above can be moved under sigma notation, because there is exactly

n iterations, therefore

n3 =
n−1∑
k=0

6k(n− k) + 1 (6)

By inspecting the expression 6k(n− k) + 1 we iterate under summation, we can notice that

it is symmetric over k, let be T (n, k) = 6k(n− k) + 1, then

T (n, k) = T (n, n− k) (7)

This symmetry allows us to alter summation bounds again, so that

n3 =
n∑

k=1

6k(n− k) + 1 (8)

Curiously enough that although
∑n−1

k=0 6k(n− k) + 1 and
∑n

k=1 6k(n− k) + 1 both simplify

to n3, they produce different closed forms. Let be P (n, q) =
∑q−1

k=0 6k(n − k) + 1 and
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Q(n, q) =
∑q

k=1 6k(n− k) + 1, then

P (n, q) =


q = 1 : 1

q = 2 : −4 + 6n

q = 3 : −27 + 18n

Q(n, q) =


q = 1 : −5 + 6n

q = 2 : −28 + 18n

q = 3 : −81 + 36n

Now let’s take a breath and briefly summarize all the results we got so far. So, we have

successfully interpolated the polynomial n3 using discrete set of finite differences data points

applying the following algorithm

(1) Express second finite difference as linear relation in terms of third finite difference (1)

(2) Express first finite difference in terms of second (2)

(3) Express cubes as sum of first order finite differences in n (3)

(4) Rearrange the terms of the sum (4)

(5) Apply sigma notation (5)

(6) Move n under sigma (6)

(7) Apply symmetry (7)

(8) Alter summation bounds (8)

2. Generalizations

Assume that our previously obtained identities n3 =
∑n−1

k=0 6k(n − k) + 1 and n3 =∑n
k=1 6k(n− k) + 1 have explicit form as follows

n3 =
∑
k

A1,1k
1(n− k)1 +A1,0k

0(n− k)0

where A1,1 = 6 and A1,0 = 1, respectively. Therefore, let be a conjecture
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Conjecture 2.1. For every n ≥ 1, n,m ∈ N there are coefficients Am,0,Am,1, . . . ,Am,m

such that

n2m+1 =
n∑

k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mk

m(n− k)m

Note that conjecture above assumes the convention 00 = 1, reader may found a compre-

hensive discussion of it in [3].

Long story short, above conjecture is true, so that real coefficients Am,r are following

m/r 0 1 2 3 4 5 6 7

0 1

1 1 6

2 1 0 30

3 1 -14 0 140

4 1 -120 0 0 630

5 1 -1386 660 0 0 2772

6 1 -21840 18018 0 0 0 12012

7 1 -450054 491400 -60060 0 0 0 51480

Table 2. Coefficients Am,r. See OEIS sequences [4, 5].

These coefficients Am,r are defined via a recurrence relation involving Binomial coefficients

and Bernoulli numbers

Definition 2.2. (Definition of coefficient Am,r.)

Am,r =


(2r + 1)

(
2r
r

)
if r = m

(2r + 1)
(
2r
r

)∑m
d≥2r+1Am,d

(
d

2r+1

) (−1)d−1

d−r
B2d−2r if 0 ≤ r < m

0 if r < 0 or r > m

where Bt are Bernoulli numbers [6]. It is assumed that B1 = 1
2
. Properties of the coeffi-

cients Am,r

• Am,m = (2m+ 1)
(
2m
m

)
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• Am,r = 0 for m < 0 and r > m

• Am,r = 0 for r < 0

• Am,r = 0 for m
2
≤ r < m

• Am,0 = 1 for m ≥ 0

• Am,r are integers for m ≤ 11

• Row sums:
∑m

r=0 Am,r = 22m+1 − 1

Proof of conjecture (2.1) as well as other discussions on topics above can be found in

literature [7, 8, 9, 10, 11]. Few OEIS sequences were contributed as well [12, 13, 14, 15, 16].

Very well, let’s wrap up this technical section and move on to the more engaging discus-

sions.

3. Discussions

3.1. Interpolation. Current manuscript starts from certain polynomial technique shown

on base case of cubes, where the key identity is the tricky rearrangement of terms in the

sum n3 =
∑n−1

k=0 ∆k3 in (4). This rearrangement was done instead of applying Faulhaber’s

formula on ∆n3 = 1+6
∑n

k=1 k which leads to well-known result involving Binomial theorem:

∆n3 = 1 + 6
∑n

k=1 k = 1 + 61
2
(n+ n2) = 1 + 3n3 + 3n. In context of rearrangement (4) and

moving n under summation (6)

Question 3.1. Can we consider the process of finding identities for cubes (6), (8) as an

interpolation method?

The steps (4) and (6) is the only distinct from well-known result

n3 =
n−1∑
k=0

2∑
r=0

(
3

r

)
kr

Instead, we arrived to identities

n3 =
n−1∑
k=0

6k(n− k) + 1; n3 =
n∑

k=1

6k(n− k) + 1
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Question 3.2. Assuming that question (3.1) is true, can we consider the conjecture (2.1)

as an interpolation method for odd powers?

3.2. Literature. The algorithm we used to obtain identities for cubes (6) and (8) is quite

simple, if not naive. I believe it should be discussed in mathematical literature, as well as

conjecture (2.1) that gives a set of real coefficients Am,r such that

n2m+1 =
n∑

k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mk

m(n− k)m

However, I was not able to find any references that in particular mention coefficients Am,r,

which is one of open questions.

3.3. Version for even powers. We have the algorithm to obtain identities for cubes (6)

and (8), as well as a set of real coefficients Am,r such that

n2m+1 =
n∑

k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mk

m(n− k)m

Is there analog for even powers?

3.4. Relation with triangular numbers. I have spotted that finite difference of cubes

can be expressed in terms of triangular numbers, i.e.

∆n3 = 1 + 6
n∑

k=0

k = 1 + 6

(
n+ 1

2

)
where

(
n+1
2

)
are triangular numbers, see OEIS sequence A000217 [17]. I wander is there a

relation between ∆n5 and pentagonal numbers [18] as well. . .

Question 3.3. Is there a relation between N-sided polygon numbers and finite differences of

odd powers 2m+ 1?
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