\begin{table}[H] \setlength\extrarowheight{-6pt} \begin{tabular}{c|cccccccc} $n/k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 0 & 1 & & & & & & & \\ 1 & 1 & 1 & & & & & & \\ 2 & 1 & 127 & 1 & & & & & \\ 3 & 1 & 1093 & 1093 & 1 & & & & \\ 4 & 1 & 3739 & 8905 & 3739 & 1 & & & \\ 5 & 1 & 8905 & 30157 & 30157 & 8905 & 1 & & \\ 6 & 1 & 17431 & 71569 & 101935 & 71569 & 17431 & 1 & \\ 7 & 1 & 30157 & 139861 & 241753 & 241753 & 139861 & 30157 & 1 \end{tabular} \caption{Values of $140 k^3 (n-k)^3 - 14k(n-k) + 1$. See the OEIS entry \href{https://oeis.org/A300785}{\texttt{A300785}} ~\cite{oeis_numerical_triangle_row_sums_give_seventh_powers}.} \label{tab:row-sums-gives-seventh-power} \end{table}